【引用本文】 宋淑玲, 潘萌, 马晓东, . 北京女性两个相邻哺乳期体内p, p'-DDE排泄速度与富集速度研究[J]. 岩矿测试, 2021, 40(6): 954-961. doi: 10.15898/j.cnki.11-2131/td.202108020091
SONG Shu-ling, PAN Meng, MA Xiao-dong. Excretion Rate and Accumulating Rate of p, p'-DDE in Beijing Resident during Consecutive Lactation[J]. Rock and Mineral Analysis, 2021, 40(6): 954-961. doi: 10.15898/j.cnki.11-2131/td.202108020091

北京女性两个相邻哺乳期体内p, p'-DDE排泄速度与富集速度研究

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质调查局自然资源综合调查指挥中心, 北京 100055

3. 

中国农业大学理学院, 北京 100193

收稿日期: 2021-08-20  修回日期: 2021-10-12  接受日期: 2021-11-05

基金项目: 国家自然科学基金项目(41473008);中国地质科学院基本科研业务费项目(CSJ201906)

作者简介: 宋淑玲, 博士, 研究员, 主要从事污染物环境行为和暴露风险评价研究。E-mail: songshuling163@163.com

通信作者: 马晓东, 博士, 副教授, 主要从事农药环境风险评价研究。E-mail: dongxm@cau.edu.cn

Excretion Rate and Accumulating Rate of p, p'-DDE in Beijing Resident during Consecutive Lactation

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China

3. 

College of Science, China Agricultural University, Beijing 100193, China

Corresponding author: MA Xiao-dong, dongxm@cau.edu.cn

Received Date: 2021-08-20
Revised Date: 2021-10-12
Accepted Date: 2021-11-05

摘要:母乳中pp’-DDE浓度是监测母体短期内pp’-DDE的“静态”蓄积水平,估算婴幼儿每日摄入量的重要技术手段。本文旨在通过监测北京女性两个相邻哺乳期内母乳中pp’-DDE浓度及变化,估算两次分娩间隔期母体内pp’-DDE的“动态”富集速度,并根据每日摄入量掌握人体pp’-DDE的长期变化趋势。在2009年至2019年期间,收集了43名女性首次分娩后六个月内和18名女性第二次分娩后六个月内的母乳样本,并采用气相色谱法检测了母乳中pp’-DDE的浓度。实验结果表明,母乳中pp’-DDE浓度在哺乳期持续下降。年龄和分娩次数是母乳中pp’-DDE浓度的影响因素,pp’-DDE浓度随母亲年龄增大而升高,随分娩次数增多而降低。18名母亲两个哺乳期内母乳中pp’-DDE平均排泄速度计算结果表明,排泄速度从18.9μg/kg lipid/month降低到16.8μg/kg lipids/month。而母体两次分娩隔期内pp’-DDE年富集速度估算值为正,分布在10.9~14.9μg/kg lipids/year之间,每日摄入量分布在29.8~40.8ng/day/kg.b.w.之间。因此北京女性哺乳期母体内pp’-DDE月排泄速度与母体年富集速度数值相当,母体pp’-DDE每日摄入量远低于世界卫生组织(WHO)建议值,北京女性是低风险暴露人群。

关键词: p, p'-DDE, 母乳, 气相色谱法, 排泄速度, 富集速度, 北京女性

要点

(1) 北京女性两个相邻哺乳期体内p, p’-DDE浓度持续下降,但排泄速度变缓。

(2) 初步研究表明母亲分娩次数与哺乳期母乳中p, p’-DDE浓度呈负相关。

(3) 北京妇女p, p’-DDE每日摄入量远低于WHO建议值,年富集速度与哺乳期内月平均排泄速度相当。

Excretion Rate and Accumulating Rate of p, p'-DDE in Beijing Resident during Consecutive Lactation

ABSTRACT

BACKGROUND:

Monitoring of p, p'-DDE in breast milk was a significant way to evaluate the p, p'-DDE accumulation level in human beings within a short-term and calculate daily intake for infants. Although the investigation of classic organic chlorine pesticides in Beijing breast milk showed that p, p'-DDE was detected with the highest residue level. The study on the accumulating rate of p, p'-DDE, indicated a dynamic and long-term change, in Beijing females this was neglected and scarce.

OBJECTIVES:

To detect p, p'-DDE in breast milks from two consecutive lactations, estimate the excreted speed during each lactation along with the impact of delivery times on residue level of p, p'-DDE in mothers, and estimate its annual accumulating rate in Beijing residents.

METHODS:

During 2009-2019, breast milk samples were collected from 43 mothers during their first lactation and 18 of them during their two consecutive lactations. The concentration of p, p'-DDE in breast milk was determined by gas chromatography.

RESULTS:

The analytical results showed that the p, p'-DDE in breast milk decreased continuously during each lactation. Age and the number of childbirths were the influencing factors of the concentration of p, p'-DDE in breast milk. The concentration of p, p'-DDE increased with the age of mothers and decreased with the number of childbirths. In addition, the average excretion speed of p, p'-DDE in breast milk from 18 twice-birth mothers decreased from 18.9μg/kg lipids per month within the first lactation to 16.8μg/kg lipids per month within the second lactation. The estimated value of the annual enrichment rate of p, p'-DDE in the interval between two births of the mother was positive, from 10.9μg/kg lipids per year to 14.9μg/kg lipid per year during the consecutive deliveries. Daily intake of p, p'-DDE was from 29.8ng/day/kg.b.w. to 40.8ng/day/kg.b.w..

CONCLUSIONS:

The depurated dose of p, p'-DDE in mothers within a month of lactation was equal to the accumulating dose in a year. The estimated daily intake of p, p'-DDE was far lower than the suggested value of WHO. The Beijing female was in a low exposure risk environment.

KEY WORDS: p, p'-DDE, breast milk, gas chromatography, excretion rate, accumulating rate, Beijing female

HIGHLIGHTS

(1) p, p'-DDE concentration in lipids of breast milk decreased during consecutive lactation, and the excretion speed slowed.

(2) There was a negative correlation between the p, p'-DDE in lipid and delivery times.

(3) The daily intake of p, p'-DDE in Beijing women was far below the recommended value of WHO, and the annual enrichment rate was equivalent to the monthly average excretion rate during lactation.

本文参考文献

[1]

Taiwo A M. A review of environmental and health effects of organochlorine pesticide residues in Africa[J].Chemosphere, 2019, 220: 1126-1140. doi: 10.1016/j.chemosphere.2019.01.001

[2]

Ma J, Pan L B, Yang X Y, et al. DDT, DDD, and DDE in soil of Xiangfen County, China: Residues, sources, spatial distribution, and health risks[J].Chemosphere, 2016, 163: 578-583. doi: 10.1016/j.chemosphere.2016.08.050

[3]

Han X, Zhang F, Meng L L, et al. Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China[J].Ecotoxicology and Environmental Safety, 2020, 190: 110125. doi: 10.1016/j.ecoenv.2019.110125

[4]

Zheng Q, Li J, Wang Y, , et al. Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior[J]. Environmental Pollution, 2020, 262: 114-139.

[5]

Yang R Q, Zhang S J, Li A, et al. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the Southeast Tibetan Plateau: Implications for sources and environmental cycling[J].Environmental Science and Technology, 2013, 47: 12736-12743. doi: 10.1021/es403562x

[6]

Qu C, Albanese S, Lima A, et al. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes[J].Environmental International, 2019, 124: 89-97. doi: 10.1016/j.envint.2018.12.031

[7]

Helou K, Harmouche-Karaki M, Karake S, et al. A review of organochlorine pesticides and polychlorinated biphenyls in Lebanon: Environmental and human contaminants[J].Chemosphere, 2019, 231: 357-368. doi: 10.1016/j.chemosphere.2019.05.109

[8]

Gakuba E, Moodley B, Ndungu P, et al. Partition dis-tribution of selected organochlorine pesticides in water, sediment pore water and surface sediment from uMngeni River, KwaZulu-Natal, South Africa[J]. Water SA, 2018, 44: 232-249.

[9]

Huang H, Ding Y, Chen W, et al. Two-way long-range atmospheric transport of organochlorine pesticides (OCPs) between the Yellow River source and the Sichuan Basin, western China[J].Science of the Total Environment, 2019, 651: 3230-3240. doi: 10.1016/j.scitotenv.2018.10.133

[10]

Jin X, Liu Y, Qiao X, et al. Risk assessment of organo-chlorine pesticides in drinking water source of the Yangtze River[J].Ecotoxicology and Environmental Safety, 2019, 182: 109390. doi: 10.1016/j.ecoenv.2019.109390

[11]

Zhou S S, Tang Q Z, Jin M Q, et al. Residues and chiral signatures of organochlorine pesticides in mollusks from the coastal regions of the Yangtze River Delta: Source and health risk implication[J].Chemosphere, 2014, 114: 40-50. doi: 10.1016/j.chemosphere.2014.03.108

[12]

Mahmoud A F A, Ikenaka Y, Yohannes Y B, et al. Distribution and health risk assessment of organochlorine pesticides (OCPs) residue in edible cattle tissues from northeastern part of Egypt: High accumulation level of OCPs in tongue[J].Chemosphere, 2016, 144: 1365-1371. doi: 10.1016/j.chemosphere.2015.10.016

[13]

Ngweme G N, Salah D M M A, Laffite A, et al. Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo[J]. Science of the Total Environment, 2021, 754(1): 142-175.

[14]

Olisah C, Okoh O O, Okoh A I, et al. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review[J].Heliyon, 2020, 6: e03518. doi: 10.1016/j.heliyon.2020.e03518

[15]

Song S L, Ma X D, Pan M, et al. Excretion kinetics of three dominant organochlorine compounds in human milk within the first 6 months postpartum[J].Environmental Monitoring and Assessment, 2018, 190: 457. doi: 10.1007/s10661-018-6850-9

[16]

Samira S, Andrea Tove F, Corey D B J, et al. The metabolic fingerprint of p, p'-DDE and HCB exposure in humans[J].Environment International, 2016, 88: 60-66. doi: 10.1016/j.envint.2015.12.015

[17]

Berghuis S A, Bos A F, Sauer P J J, et al. Developmental neurotoxicity of persistent organic pollutants: An update on childhood outcome[J].Archives of Toxicology, 2015, 89: 687-709. doi: 10.1007/s00204-015-1463-3

[18]

Abolhassani M, Asadikaram G, Paydar P, et al. Organochlorine and organophosphorous pesticides may induce colorectal cancer: A case-control study[J].Ecotoxicology and Environmental Safety, 2019, 178: 168-177. doi: 10.1016/j.ecoenv.2019.04.030

[19]

Dardiotis E, Aloizou A M, Sakalakis E, et al. Organochlorine pesticide levels in Greek patients with Parkinson's disease[J].Toxicology Report, 2020, 7: 596-601. doi: 10.1016/j.toxrep.2020.03.011

[20]

Yin S J, Wei J, Wei Y H, et al. Organochlorine pesticides exposure may disturb homocysteine metabolism in pregnant women[J].Science of the Total Environment, 2020, 708: 135146. doi: 10.1016/j.scitotenv.2019.135146

[21]

Carvalho F P. Pesticides, environment, and food safety[J].Food and Energy Security, 2017, 6(2): 48-60.

[22]

Girones L, Oliva A L, Marcovecchio J E, et al. Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments[J].Current Environmental Health Reports, 2020, 7: 147-160. doi: 10.1007/s40572-020-00272-7

[23]

Santiago E C, Cayetano M G. Organochlorine pesticides in ambient air in selected urban and rural residential areas in the philippines derived from passive samplers with polyurethane disks[J].Bulletin of Environmental Contamination and Toxicology, 2011, 86: 50-55. doi: 10.1007/s00128-010-0160-4

[24]

Yu Y X, Tao S, Liu W X, et al. Dietary intake and human milk residues of hexachlorocyclohexane isomers in two Chinese cities[J].Environmental Science and Technology, 2009, 43: 4830-4835. doi: 10.1021/es900082v

[25]

Sun H W, An T C, Li G Y, et al. Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China[J].Environmental Science and Pollution Research, 2014, 21(17): 10083-10095. doi: 10.1007/s11356-014-3031-4

[26]

Tang J, An T, Xiong J, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J].Environmental Geochemistry and Health, 2017, 39: 1487-1499. doi: 10.1007/s10653-017-9936-3

[27]

宋淑玲, 田芹, 佟玲, 等. 生物样品母乳中有机氯农药类化合物近二十年研究进展[J]. 岩矿测试, 2016, 35(5): 339-347.

Song S L, Tian Q, Tong L, et al. Research application and development of organochlorine pesticides in breast milk in the recent twenty years[J]. Rock and Mineral Analysis, 2016, 35(5): 339-347.

[28]

Waliszewski S M G, Melo-Santiesteban R. Breast milk excretion kinetic of β-HCH, p, p'-DDE and p, p'-DDT[J].Bulletin of Environmental Contamination and Toxicology, 2009, 83: 869-873. doi: 10.1007/s00128-009-9796-3

[29]

Tue N M, Sudaryanto A, Minh T B, et al. Kinetic differences of legacy organochlorine pesticides and polychlorinated biphenyls in Vietnamese human breast milk[J].Chemosphere, 2010, 81: 1006-1011. doi: 10.1016/j.chemosphere.2010.09.013

[30]

LaKind J S, Berlin C M, Sjödin A, et al. Do human milk concentrations of persistent organic chemicals really decline during lactation? Chemical concentrations during lactation and milk/serum partitioning[J].Environmental Health Perspectives, 2009, 117(10): 1625-1631. doi: 10.1289/ehp.0900876

[31]

Man Y B, Chan J K Y, Wang H S, et al. DDTs in mothers' milk, placenta and hair, and health risk assessment for infants at two coastal and inland cities in China[J].Environment International, 2014, 65: 73-82. doi: 10.1016/j.envint.2014.01.001

[32]

郭晓辰, 饶竹, 高冉, 等. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留[J]. 岩矿测试, 2014, 33(3): 406-412.

Guo X C, Rao Z, Gao R, et al. Determination of 24 pesticides including pyrethroids, organochlorines and chlorothalonil in underground water by gas chromatography[J]. Rock and Mineral Analysis, 2014, 33(3): 406-412.

[33]

徐殿斗, 马玲玲, 李淑珍, 等. 北京石景山区夏季大气中有机氯农药的研究[J]. 中国环境科学, 2010, 30(5): 599-602.

Xu D D, Ma L L, Li S Z, et al. Organochloride pesiticides in the atmosphere in the Shijingshan District of Beijing[J]. China Environmental Science, 2010, 30(5): 599-602.

[34]

张春辉, 吴永贵, 杨少博, 等. 广东沿海3种食用鱼中有机氯农药的残留特征及风险评价[J]. 贵州农业科技, 2015, 43(11): 174-178.

Zhang C H, Wu Y G, Yang S B, et al. Residual feature and health risk assessment of organo-chlorine pesticides in three edible fish from Guangdong Coast[J]. Guizhou Agricultural Sciences, 2015, 43(11): 174-178.

[35]

王晓华, 母清林, 张庆红, 等. 舟山近岸海域贝类中有机氯农药残留水平及人体健康风险评估[J]. 环境污染与防治, 2014, 36(10): 59-62, 67.

Wang X H, Mu Q L, Zhang Q H, et al. Residue level of organochlorine pesticides in shellfish of Zhoushan coastal areas and assessment of its risk to human health[J]. Environmental Pollution & Control, 2014, 36(10): 59-62, 67.

[36]

Sudaryanto A, Kunisue T, Kajiwara N, et al. Specific accumulation of organochlorines in human breast milk from Indonesia: Levels, distribution, accumulation kinetics and infant health risk[J].Environmental Pollution, 2006, 139: 107-117. doi: 10.1016/j.envpol.2005.04.028

相似文献(共20条)

[1]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[4]

孙青, 李松. 高压气相色谱法快速测定痕量长链烯酮. 岩矿测试, 2008, 27(1): 5-8.

[5]

邓天龙, 王爽. 水环境中苯系污染物的分析研究进展. 岩矿测试, 2008, 27(2): 141-145.

[6]

张彩明, 许锦, 蒋启贵, 张渠. 在线富集-气相色谱法分析天然气中痕量轻烃. 岩矿测试, 2013, 32(2): 319-324.

[7]

宋淑玲, 田芹, 佟玲, 潘萌, 马生明. 生物样品母乳中有机氯农药类化合物近二十年研究进展. 岩矿测试, 2016, 35(5): 449-457. doi: 10.15898/j.cnki.11-2131/td.2016.05.002

[8]

方国桢, 方梅. 气相色谱和薄层色谱法在形态分析中的应用. 岩矿测试, 1996, (4): 299-310.

[9]

王磊, 刘庆学, 安彩秀, 高希娟, 刘金巍, 李娜. 柱前衍生-气相色谱法同时测定水中醛酮类和硝基苯类化合物. 岩矿测试, 2010, 29(5): 486-490.

[10]

刘玉龙, 黄燕高, 刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探. 岩矿测试, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139

[11]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[12]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[13]

高松, 张兰英, 王琳, 宋杰, 崔哲, 吕春欣, 刘鹏, 邓银舟. Needle trap-顶空进样-气相色谱法分析地下水中的苯系物. 岩矿测试, 2010, 29(5): 508-512.

[14]

肖刚. 加速溶剂提取-气相色谱法同时测定土壤中的22种有机氯和有机磷农药. 岩矿测试, 2012, 31(6): 1033-1036.

[15]

梁汉东, 冉凡林, 张宏刚, 张月琴. 气相色谱法测定煤层瓦斯中低浓度氢气和氦气. 岩矿测试, 2005, (4): 254-258.

[16]

房贤文, 谭培功, 单红, 董新春, 张婷婷. 气相色谱法测定地表水中醛酮类化合物. 岩矿测试, 2007, 26(5): 363-366.

[17]

王瑞, 李季, 蒋启贵, 张彩明. 气相色谱法定量测定烃源岩中轻烃的含量. 岩矿测试, 2008, 27(5): 333-336.

[18]

冯朝军, 潘建明, 王红群, 皮业华. 微波消解-气相色谱法测定沉积物中的木质素. 岩矿测试, 2011, 30(1): 23-26.

[19]

左海英, 张莉, 邢晨曦, 李晓亚, 张永涛. 在线净化-气相色谱法测定土壤中有机磷农药. 岩矿测试, 2012, 31(4): 660-665.

[20]

陈卫明, 肖细炼, 李庆霞, 薄玮, 张勤. 气相色谱法测定油气化探样品中酸解烃的研究. 岩矿测试, 2015, 34(6): 698-703. doi: 10.15898/j.cnki.11-2131/td.2015.06.015

计量
  • PDF下载量(2)
  • 文章访问量(417)
  • HTML全文浏览量(174)
  • 被引次数(0)
目录

Figures And Tables

北京女性两个相邻哺乳期体内p, p'-DDE排泄速度与富集速度研究

宋淑玲, 潘萌, 马晓东