【引用本文】 范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035
FAN Chen-zi, LIU Yong-bing, ZHAO Wen-bo, et al. Pollution Distribution Characteristics and Ecological Risk Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons in the River Sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035

云南安宁水系沉积污染物分布特征与风险评价

1. 

国家地质实验测试中心, 中国地质调查局微区与元素形态重点实验室, 北京 100037

2. 

中国地质大学(北京)材料科学与工程学院, 北京 100083

收稿日期: 2021-03-08  修回日期: 2021-05-11  接受日期: 2021-07-02

基金项目: 中国地质调查局地质调查项目(DD20190589);国家重点研发计划项目(2019YFC1805005);中国地质科学院基本科研业务费项目(CSJ201903,CSJ202014)

作者简介: 范晨子, 博士, 副研究员, 主要从事环境矿物学研究工作。E-mail: czfan2013@163.com

Pollution Distribution Characteristics and Ecological Risk Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons in the River Sediments in Anning, Yunnan Province

1. 

National Research Center for Geoanalysis; Key Laboratory of Micro- and Element Forms Analysis, China Geological Survey, Beijing 100037, China

2. 

School of Materials Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China

Received Date: 2021-03-08
Revised Date: 2021-05-11
Accepted Date: 2021-07-02

摘要:云南安宁是长江经济带上游重要的工业、矿业城市,是滇中新区经济发展和生态文明建设的支点。对安宁地区地球化学水系沉积物、水文地质等方面的调查尚停留在二十世纪七八十年代,而近年来人类生产生活对生态环境造成的影响也不明确。为揭示安宁地区水系沉积物污染状况、空间分布特征与潜在生态风险,本文以2019年采集的云南安宁地区水系表层沉积物为研究对象,利用X射线荧光光谱、电感耦合等离子体质谱、气相色谱-质谱等方法系统分析其中常量元素、微量元素和16种优先控制的多环芳烃(PAHs)含量和空间分布特征,采用地累积指数法、Hankanson潜在生态风险指数法对8种典型重金属(As、Cd、Cr、Cu、Ni、Zn、Pb、Hg)以及采用质量基准法对PAHs进行了生态风险评价。结果表明:①水系沉积物中的重金属含量不同程度地高于中国全国和南方水系沉积物背景值,且变异程度较高、空间分布不均,Cd、Hg和As的潜在生态风险处于中等到严重等级;②∑PAHs平均含量为20856.0ng/g,较长江流域均值显著偏高,16种单体检出率接近100%,但PAHs总体生态风险较低,石化工业和石油燃料的燃烧是PAHs主要来源;③污染物重点潜在生态风险主要集中于普渡河流域螳螂川沿岸钢铁、化工等厂矿周边。本研究结果为加强流域工业点源污染监管、减少和控制工业污水排放提供了科学依据。

关键词: 安宁地区, 水系沉积物, 重金属, 多环芳烃, X射线荧光光谱法, 电感耦合等离子体质谱法, 气相色谱-质谱法, 生态风险

要点

(1) 安宁地区沉积物中的重金属含量偏高,分布不均,Cd、Hg、As生态风险大。

(2) 沉积物中的多环芳烃平均含量高,石油燃料的燃烧是其主要来源。

(3) 污染物潜在风险集中于普渡河流域螳螂川沿岸钢铁、化工等厂矿周边。

Pollution Distribution Characteristics and Ecological Risk Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons in the River Sediments in Anning, Yunnan Province

ABSTRACT

BACKGROUND:

Anning is an important industrial and mining city in the upper reaches of the Yangtze River Economic Belt. It is a fulcrum for economic development and ecological civilization construction in the Central Yunnan New Area. The investigation of geochemical water system sediments and hydrogeology in the Anning area was last performed in the 1970s and the 1980s. In recent years, the impact of human production and life on the ecological environment remains unclear.

OBJECTIVES:

Surface sediment samples from the Anning area were investigated to reveal their pollution status, spatial distribution characteristics, and potential ecological risks of river sediments.

METHODS:

X-ray fluorescence spectroscopy, inductively coupled plasma optical mass spectrometry, gas chromatography-mass spectrometry, and other methods were used to systematically analyze the contents and distribution characteristics of major elements, trace elements, and 16 priority-controlled PAHs. Geoaccumulation index, Hankanson ecological risk index, and sediment quality criteria were used to assess the ecological risk of eight typical heavy metals (As, Cd, Cr, Cu, Ni, Zn, Pb, and Hg) and PAHs.

RESULTS:

Results showed that the heavy metal content in the river sediments from the Anning area was higher than the background values of the national and southern rivers. The spatial distributions of the heavy metals were highly variable and uneven. Additionally, Cd, Hg, and Ad showed medium to severe potential ecological risks. The average content of ∑PAHs was 20856ng/g, and the detection rate of the 16 monomers was ~100%. The overall ecological risk of PAHs was low, and their main sources were petrochemical industry and combustion of petroleum fuels. The major risks of pollutants in the river sediments of the Anning area were mainly concentrated in the vicinity of steel plants and chemical factories in the Tanglangchuan River.

CONCLUSIONS:

This research provides a scientific basis for local governments to strengthen key industrial point source pollution control, and reduce and control industrial sewage discharge.

KEY WORDS: Anning area, surface sediments, heavy metals, PAHs, X-ray fluorescence spectrometry, inductively coupled plasma-mass spectrometry, gas chromatography-mass spectrometry, ecological risk

HIGHLIGHTS

(1) The heavy metals in Anning sediments exhibit high concentrations and are unevenly distributed, and Cd, Hg, and As have high ecological risks.

(2) The average content of polycyclic aromatic hydrocarbons (PAHs) in the sediments is high, and the combustion of petroleum fuels is the main source.

(3) The potential risks of pollutants are concentrated in the vicinity of iron and steel, chemicals industries, and other factories that mine along the Tanglangchuang River.

本文参考文献

[1] Forstner U. Metal pollution in the aquatic environment[M] . Berlin: Spring Verleg, 1978
[2]

李佳宣, 施泽明, 郑林, 等. 沱江流域水系沉积物重金属的潜在生态风险评价[J]. 地球与环境, 2010, 38(4): 481-487.

Li J X, Shi Z M, Zheng L, et al. Evaluation on potential ecological risk of heavy metals pollution in sediments from Tuojiang Drainage[J]. Earth and Environment, 2010, 38(4): 481-487.

[3]

肖冬冬, 史正涛, 苏斌, 等. 滇池宝象河表层沉积物重金属含量空间分布特征及污染评价[J]. 环境化学, 2017, 36(12): 2719-2728. doi: 10.7524/j.issn.0254-6108.2017041102

Xiao D D, Shi Z T, Su B, et al. Spatial distribution and pollution assessment of heavy metals in surface sediment of Baoxiang River, Dianchi Lake[J].Environmental Chemistry, 2017, 36(12): 2719-2728. doi: 10.7524/j.issn.0254-6108.2017041102

[4]

Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: Remobilization and demobilization[J].Science of The Total Environment, 2001, 266: 195-202. doi: 10.1016/S0048-9697(00)00740-3

[5]

Liu Y, Huang H, Sun T, et al. Comprehensive risk assessment and source apportionment of heavy metal contamination in the surface sediment of the Yangtze River Anqing Section, China[J].Environmental Earth Sciences, 2018, 77: 493. doi: 10.1007/s12665-018-7621-1

[6]

Enuneku A, Omoruyi O, Tongo I, et al. Evaluating the potential health risks of heavy metal pollution in sediment and selected benthic fauna of Benin River, southern Nigeria[J].Applied Water Science, 2018, 8(8): 1-13. doi: 10.1007/s13201-018-0873-9

[7]

张杰, 郭西亚, 曾野, 等. 太湖流域河流沉积物重金属分布及污染评估[J]. 环境科学, 2019, 40(5): 2202-2210. doi: 10.3969/j.issn.1000-6923.2019.05.049

Zhang J, Guo X Y, Zeng Y, et al. Spatial distribution and pollution assessment of heavy metals in river sediments from Lake Taihu Basin[J].Environmental Science, 2019, 40(5): 2202-2210. doi: 10.3969/j.issn.1000-6923.2019.05.049

[8]

Abuduwaili J, Zhang Z Y, Jiang F Q, et al. Assessment of the distribution, sources and potential ecological risk of heavy metals in the dry surface sediment of Aibi Lake in northwest China[J]. PLOS One, 2015, 10(3): 1-16.

[9]

田建民, 徐争启, 张富贵, 等. 四川雷波磷矿区沉积物重金属污染特征研究[J]. 环境科学与技术, 2020, 43(11): 59-68.

Tian J M, Xu Z Q, Zhang F G, et al. Pollution characteristics of heavy metals in sediments of Leibo phosphate mine area, Sichuan Province[J]. Environmental Science & Technology, 2020, 43(11): 59-68.

[10]

Hong W J, Jia H L, Li Y F, et al. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, northeast China[J].Ecotoxicology and Environmental Safety, 2016, 128: 11-20. doi: 10.1016/j.ecoenv.2016.02.003

[11]

Ke X, Gui S F, Huang H, et al. Ecological risk assess-ment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J].Chemosphere, 2017, 175: 473-481. doi: 10.1016/j.chemosphere.2017.02.029

[12]

马晗宇, 申月芳, 应耀明, 等. 独流减河湿地沉积物中多环芳烃生态风险评价[J]. 环境化学, 2020, 39(8): 2253-2262.

Ma H Y, Shen Y F, Ying Y M, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments of Duliujian River Wetland[J]. Environmental Chemistry, 2020, 39(8): 2253-2262.

[13]

尚文郁, 谢曼曼, 王淑贤, 等. 应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价[J]. 岩矿测试, 2020, 39(4): 597-608.

Shang W Y, Xie M M, Wang S X, et al. Detection of heavy metals mobile fraction in Lagoonal wetland sediment using near-infrared spectroscopy and ecological risk assessment[J]. Rock and Mineral Analysis, 2020, 39(4): 597-608.

[14]

Ayari J, Barbieri M, Agan Y, et al. Trace element contam-ination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia: A river basin scale assessment[J].Environmental Geochemistry and Health, 2021, . doi: 10.1007/S10653-021-00887-1

[15]

Yuan Z, He N, Wu X, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk[J].Ecotoxicology and Environmental Safety, 2021, 214: 112095. doi: 10.1016/j.ecoenv.2021.112095

[16]

张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738.

Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evalution in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738.

[17]

沈小明, 吕爱娟, 沈加林, 等. 长江口启东-崇明岛航道沉积物中多环芳烃分布来源及生态风险评价[J]. 岩矿测试, 2014, 33(3): 379-385.

Shen X M, Lv A J, Shen J L, et al. Distribution characteristics, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in waterway sediments from Qidong and Chongming Island of Yangtze River Estuary[J]. Rock and Mineral Analysis, 2014, 33(3): 379-385.

[18]

Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.

[19]

Zhao H, Zhao J, Yin C, et al. Index models to evaluate the potential metal pollution contribution from washoff of road-deposited sediment[J].Water Research, 2014, 50: 71-79. doi: 10.1002/2013WR013939

[20]

Hankanson L. An ecological risk index for aquatic pollution control-A sediment ecological approach[J].Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8

[21]

Ingersoll C G, Macdonald D, Wang N, et al. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines[J].Achieves of Environmental Contamination and Toxicology, 2001, 41: 8-21. doi: 10.1007/s002440010216

[22]

Field L J, MacDonald D D, Norton S B, et al. Evaluating sediment chemistry and toxicity data using logistic regression modeling[J].Environmental Toxicology and Chemistry, 1999, 18(6): 1311-1322. doi: 10.1002/etc.5620180634

[23]

Field L J, MacDonald D D, Norton S B, et al. Predicting amphipod toxicity from sediment chemistry using logistic regression models[J].Environmental Toxicology and Chemistry, 2002, 21(9): 1993-2005. doi: 10.1002/etc.5620210929

[24]

Forstner U, Wittmann G T W著. 王忠玉, 姚重华译. 水环境的重金属污染[M]. 北京: 海洋出版社, 1987.

Forstner U, Wittmann G T W(Editors). Wang Z Y, Yao Z H(Translators). Metal pollution in the aquatic environment[M]. Beijing: China Ocean Press, 1987.

[25]

迟清华,鄢明才. 应用地球化学元素丰度数据手册[M] . 北京: 地质出版社, 1987

Chi Q H,Yan M C. Handbook of applied geochemical element abundance data[M] . Beijing: Geological Publishing House, 1987
[26]

黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994, 23(2): 140-145.

Li T. Element abundances of China's continental crust and its sedimentary layer and upper continental crust[J]. Geochimica, 1994, 23(2): 140-145.

[27]

史长义, 梁萌, 冯斌, 等. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2): 235-251.

Shi C Y, Liang M, Feng B, et al. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 2016, 41(2): 235-251.

[28]

程志中, 谢学锦, 潘含江, 等. 中国南方地区水系沉积物中元素丰度[J]. 地学前缘, 2011, 18(5): 289-295.

Cheng Z Z, Xie X J, Pan H J, et al. Abundance of elements in stream sediment in South China[J]. Earth Science Frontiers, 2011, 18(5): 289-295.

[29]

宁增平, 蓝小龙, 黄正玉, 等. 贺江水系沉积物重金属空间分布特征、来源及潜在生态风险[J]. 中国环境科学, 2017, 37(8): 3036-3047. doi: 10.3969/j.issn.1000-6923.2017.08.028

Ning Z P, Lan X L, Huang Z Y, et al. Spatial distribution characteristics, sources and potential ecological risk of heavy metals in sediments of Hejiang River[J].China Environmental Science, 2017, 37(8): 3036-3047. doi: 10.3969/j.issn.1000-6923.2017.08.028

[30]

Long E R, Macdonald D D, Smith S L, et al. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J].Environmental Management, 1995, 19(1): 81-97. doi: 10.1007/BF02472006

[31]

杜耘. 保护长江生态环境, 统筹流域绿色发展[J]. 长江流域资源与环境, 2016, 25(2): 171-179.

Du Y. Protecting the eco-environment, and striving for the green development in the Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2016, 25(2): 171-179.

[32]

李亚东. 昆明幅G-48-25 1/20万地球化学图说明书: 水系沉积物测量[D]. 昆明: 云南省地质矿产勘查开发局, 1989.

Li Y D. Kunming sheet G-48-25 1: 200000 geochemical map manual: Water system sediment survey[D]. Kunming: Yunnan Provincial Bureau of Geology and Mineral Exploration and Development, 1989.

[33]

曹其林. 昆明幅G-48-25 1/20万区域水文地质普查报告[D]. 昆明: 云南省地质局水文工程地质公司, 1977.

Cao Q L. Kunming sheet G-48-25 1: 200000 regional hydrogeological survey report[D]. Kunming: Hydrological Engineering Geology Company of Yunnan Geology Bureau, 1977.

[34]

张丽, 段云龙, 字润祥, 等. 螳螂川河流磷、氟污染与防治对策分析研究[J]. 环境科学导刊, 2015, 34(6): 31-35.

Zhang L, Duan Y L, Zi R X, et al. Study on phosphorus and fluorine pollution and control in Tanglangchuan River[J]. Environmental Science Survey, 2015, 34(6): 31-35.

[35]

Wilding L P. Spatial variability: Its documentation, accommodation and implication to soil surveys[M]//Wageningen. Soil spatial variability. 1985.

[36]

邵晓华. 云南滇池底泥重金属元素分布规律研究[D]. 南京: 南京师范大学, 2003.

Shao X H. Study on the distribution of heavy metal elements in sediment of Dianchi Lake, Yunnan[D]. Nanjing: Nanjing Normal University, 2003.

[37]

肖冬冬. 滇池宝象河表层沉积物重金属特征及潜在生态风险评价[D]. 昆明: 云南师范大学, 2018.

Xiao D D. Characteristics and potential ecological risk assessment of heavy metals in surface sediments of Baoxiang River, Dianchi[D]. Kunming: Yunnan Normal University, 2018.

[38]

熊燕, 宁增平, 刘意章, 等. 南盘江流域(云南段)水系沉积物中重金属含量分布特征及其污染状况评价[J]. 地球与环境, 2017, 45(2): 171-178.

Xiong Y, Ning Z P, Liu Y Z, et al. Distribution and pollution evaluation of heavy metals in sediments in the Nanpan River Basin (Yunnan Section)[J]. Earth and Environment, 2017, 45(2): 171-178.

[39]

王丹. 长江上游(宜宾至泸州段)毒害污染物分布特征及风险评价——以重金属和多环芳烃为例[D]. 邯郸: 河北工程大学, 2016.

Wang D. Pollution characteristics and risk of persistent toxic substances from Yangtze River (Yibin to Luzhou)-A case study for heavy metal and polycyclic aromatic hydrocarbons[D]. Handan: Hebei University of Engineering, 2016.

[40]

孙洁. 岷江中游水系沉积物中重金属的环境地球化学评价[D]. 成都: 成都理工大学, 2010.

Sun J. Environmental geochemistry evolution of heavy metal elements in sediments from middle reaches of Minjiang River[D]. Chengdu: Chengdu University of Technology, 2010.

[41]

郭威. 三峡库区低水运行期表层沉积物重金属污染特征研究[D]. 郑州: 华北水利水电大学, 2016.

Guo W. Study on heavy metals pollution of sediments in the Three Gorges Reservoir during its operating period with low water level[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016.

[42]

李利荣, 王艳丽, 高璟赟, 等. 中国表层水体沉积物中多环芳烃源解析及评价[J]. 中国环境监测, 2013, 29(6): 92-98.

Li L R, Wang Y L, Gao J Y, et al. Source and risk assessment of PAHs in surface sediments from rivers and lakes of China[J]. Environmental Monitoring in China, 2013, 29(6): 92-98.

[43]

詹咏, 韦婷婷, 叶汇彬, 等. 三亚河沉积物PAHS和PCBs的分布、来源及风险评价[J]. 环境科学, 2020, . doi: 10.13227/j.hjkx.202008267

Zhan Y, Wei T T, Ye H B, et al. Distribution, sources, and ecological risk evolution of the PAHs and PCBs in the sediments from Sanya River[J].Environmental Science, 2020, . doi: 10.13227/j.hjkx.202008267

[44]

王喆, 卢丽, 裴建国, 等. 城郊型地下河表层沉积物多环芳烃来源分析与生态风险评价[J]. 环境化学, 2020, 39(10): 2733-2741.

Wang Z, Lu L, Pei J G, et al. Source analysis and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from suburban type underground river[J]. Environmental Chemistry, 2020, 39(10): 2733-2741.

[45]

高秋生, 焦立新, 杨柳, 等. 白洋淀典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2018, 39(4): 1616-1627.

Gao Q S, Jiao L X, Yang L, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Baiyangdian Lake[J]. Environmental Science, 2018, 39(4): 1616-1627.

相似文献(共20条)

[1]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[2]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[3]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[4]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[5]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[6]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[7]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[8]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[9]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[10]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[11]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[12]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[13]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[14]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[15]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[16]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[17]

沈小明, 吕爱娟, 沈加林, 胡璟珂, 时磊, 蔡小虎. 长江口启东—崇明岛航道沉积物中多环芳烃分布来源及生态风险评价. 岩矿测试, 2014, 33(3): 379-385.

[18]

尚文郁, 谢曼曼, 王淑贤, 孙青, 岑况. 应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价. 岩矿测试, 2020, 39(4): 597-608. doi: 10.15898/j.cnki.11-2131/td.202001010001

[19]

李玉芳, 潘萌, 顾涛, 佟玲, 宋淑玲. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征. 岩矿测试, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167

[20]

刘金巍, 安彩秀, 王磊, 王芸, 祁春景, 刘庆学. 质谱法测定大气颗粒物中多环芳烃的内标选择和质量控制. 岩矿测试, 2012, 31(2): 325-330.

计量
  • PDF下载量(13)
  • 文章访问量(1003)
  • HTML全文浏览量(35)
  • 被引次数(0)
目录

Figures And Tables

云南安宁水系沉积污染物分布特征与风险评价

范晨子, 刘永兵, 赵文博, 刘成海, 袁继海, 郭威, 郝乃轩