【引用本文】 陈爱清, 何宏平, 谭伟, 等. X射线衍射旋转撒样法分析氟金云母多型组成与含量[J]. 岩矿测试, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014
CHEN Ai-qing, HE Hong-ping, TAN Wei, et al. Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014

X射线衍射旋转撒样法分析氟金云母多型组成与含量

1. 

三峡大学分析测试中心, 湖北 宜昌 443002

2. 

中国科学院矿物学与成矿学重点实验室, 广东省矿物物理与材料研究开发重点实验室, 中国科学院广州地球化学研究所, 广东 广州 510640

3. 

中国科学院大学, 北京 100049

收稿日期: 2021-01-25  修回日期: 2021-04-07  接受日期: 2021-07-02

基金项目: 国家自然科学基金项目(41530313,41772039);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC023);广东省科技计划项目(2020B1212060055)

作者简介: 陈爱清, 博士, 工程师, 从事矿物学和X射线衍射晶体学研究。E-mail: caq99100@163.com

通信作者: 何宏平, 博士, 研究员, 从事黏土矿物学、矿物结构与矿物化学等研究。E-mail: hehp@gig.ac.cn

Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method

1. 

Analysis and Testing Center, China Three Gorges University, Yichang 443002, China

2. 

Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences; Guangdong Provincial Key Laboratory of Mineral Physics and Materials; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

3. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: HE Hong-ping, hehp@gig.ac.cn

Received Date: 2021-01-25
Revised Date: 2021-04-07
Accepted Date: 2021-07-02

摘要:合成氟金云母多型种类与含量对云母的物理化学性质具有重要的影响。然而在X射线粉晶衍射(XRD)制样过程中云母00l基面极易产生择优取向,严重制约了云母多型组成和含量的分析。传统撒样法可促使晶体取向随机分布,但制备的试样表面不够平坦。本文对传统撒样法进行改进,在撒样过程中使样品架均匀旋转,从而获得表面平坦的试样。XRD测试结果表明,旋转撒样法取向指数(OI=I001/I060)为3.9,与无择优取向的理论值4.5接近,明显优于正压法和侧装法(OI值分别为38.7和18.1),表明旋转撒样法能够显著减弱云母择优取向。这主要是由于旋转撒样法使晶体颗粒之间形成犬牙交错分布,提高了云母各晶面随机分布概率。Rietveld全图拟合分析显示,旋转撒样法获得的XRD数据精修效果较好,计算出本文合成的氟金云母样品中1M和2M1多型含量分别为86%和14%,8个工业合成的氟金云母样品中1M和2M1多型含量分别为57%~72%和28%~43%,并且存在较多的堆垛层错。总之,旋转撒样法减弱择优取向效果显著,为研究云母晶体生长、多型成因以及结构与性能之间的关系提供了技术支撑。

关键词: 择优取向, 旋转撒样法, X射线粉晶衍射, 氟金云母, 多型

要点

(1) 改进了传统XRD撒样法,减弱择优取向效果明显优于侧装法。

(2) 证实了合成氟金云母主要由1M和2M1多型组成。

(3) 发现合成氟金云母存在较多的2M1型,含量达到28%~43%。

Composition and Content of Fluorophlogopite Polytypes by X-ray Diffraction with Rotation-spraying Method

ABSTRACT

BACKGROUND:

The polytype species and the content of synthetic fluorophores have a considerable influence on the physiochemical properties of fluorphlogopites. However, conventional methods (e.g., front loading and side loading) of sample preparation tend to generate a strongly preferred orientation on the 00l basal plane, limiting the X-ray diffraction (XRD) analysis of the composition and content of fluorphlogopite polytypes. The conventional spraying method was utilized to prepare samples with random orientations for XRD analysis. However, the sample surface was not flat enough to perform the analysis.

OBJECTIVES:

To decrease the preferred orientation and develop a method for quantitative analysis of fluorphlogopite polytypes.

METHODS:

In this study, the conventional spraying method was improved. The sample holder was rotated evenly during the spraying process to obtain a flat surface sample.

RESULTS:

XRD data suggested that the orientation index (OI=I001/I060) obtained by the rotation-spraying method was 3.9, which was close to the theoretical value (4.5). The OIs of the front and side loading methods were 38.7 and 18.1, respectively, which were significantly larger than the theoretical value (4.5). The results showed that the rotation-spraying method significantly decreased the preferred orientation of mica along the 00l basal plane compared with the front and side loading methods. Microscopic observations revealed that the surface of the sample prepared by the rotation-spraying method exhibited a canine tooth staggered distribution. This increased the random distribution between the crystal particles and reduced the preferred orientation. Rietveld quantitative phase analyses of fluorphlogopites were successfully performed based on the XRD data for the samples prepared by the rotation-spraying method. In this study, Rietveld refinement showed that the contents of 1M and 2M1 polytypes of synthetic fluorphlogopites were 86% and 14%, respectively. The systematic investigations of eight commercial fluorphlogopites revealed that these samples were composed of 28%-43% 2M1 polytype and 57%-72% 1M polytype. In addition, significant stacking faults were observed in these eight commercial samples.

CONCLUSIONS:

The rotation-spraying method significantly weakened the effect of preferential orientation. This study provides technical support for understanding the mica crystal growth, polymorphism, and structure-performance relationship.

KEY WORDS: preferred orientation, rotation-spray method, X-ray powder diffraction, fluorophlogopite, polytype

HIGHLIGHTS

(1) The developed rotation-spraying method showed a stronger effect on reducing the preferred orientation of fluorphlogopites than the side loading method.

(2) Synthetic fluorphlogopites were mainly composed of 1M and 2M1 polytypes.

(3) Commercial synthetic fluorphlogopites had abundant 2M1 polytype (28%-43%).

本文参考文献

[1]

徐扬群. 合成云母的制造、加工与应用[M] . 北京: 化学工业出版社, 2012: 1-5.

Xu Y Q. Manufacuring, processing and application of synthetic mica[M] . Beijing: Chemical Industry Press, 2012: 1-5.
[2]

Casasola R, Pérez J, Romero M, et al. Crystal growth of F-phlogopite from glasses of the SiO2-Al2O3-MgO-K2O-F system[J].Journal of the American Ceramic Society, 2016, 99(2): 484-491. doi: 10.1111/jace.13995

[3]

Ma L J, Sun Z C, Zhang L, et al. Study on mechanism and theoretical model of tool wear in fluorophlogopite glass-ceramics turning[J]. Journal of Materials Processing Technology, 2020, 275: 1-10.

[4]

Fregola R A, Capitani G C, Scandale E, et al. Chemical control of 3T stacking order in a Li-poor biotite mica[J].American Mineralogist, 2009, 94: 334-344. doi: 10.2138/am.2009.3004

[5]

Capitani G C, Schingaro E, Lacalamita M, et al. Structural anomalies in tobelite-2M2 explained by high resolution and analytical electron microscopy[J].Mineralogical Magazine, 2016, 80(1): 143-156. doi: 10.1180/minmag.2015.079.7.14

[6]

Kuo C L, Huang Y H, Fan S J, et al. X-ray topography study on imperfections in synthetic mica (fluorophlogopite) crystal[J].Journal of Material Science, 1981, 16(4): 877-882. doi: 10.1007/BF00542730

[7]

Bloss F D, Gibbs G V, Cummings D, et al. Polymorphism and twinning in synthetic fluorophlogopite[J].Journal of Geology, 1963, 71(5): 537-548. doi: 10.1086/626931

[8] Shell H R,Ivey K H. Fluorine micas[M] . Washington: U.S.Department of the Interior, Bureau of Mines, 1969: 152-154.
[9]

Sunagawa I, Endo Y, Daimon N, et al. Nucleation, growth and polytypism of flour-phlogopite from the vapour phase[J]. Journal of Crystal Growth, 1968, 3(4): 751.

[10]

Hammouda T, Pichavant M, Barbey P, et al. Synthesis of fluorphlogopite single crystals.Applications to experi-mental studies[J].European Journal of Mineralogy, 1995, 7: 1381-1387. doi: 10.1127/ejm/7/6/1381

[11]

李中和, 秦关华, 翁臻培, 等. 人造氟金云母的多型[J]. 人工晶体学报, 1982, (Supplement): 144.

Li Z H, Qin G H, Weng Z P, et al. Polytype of synthetic fluorophlogopite[J]. Journal of Synthetic Crystals, 1982, (Supplement): 144.

[12]

Hillier S. Use of an air brush to spray dry samples for X-ray powder diffraction[J].Clay Minerals, 1999, 34: 127-135. doi: 10.1180/000985599545984

[13] Moore D M,Reynolds R C J. X-ray diffraction and the identification and analysis of clay minerals[M] . New York: Oxford University Press, 1997: 204-225.
[14]

Grathoff G H, Moore D M. Illite polytype quantification using WILDFIRE® calculated X-ray diffraction patterns[J].Clays and Clay Minerals, 1996, 44(6): 835-842. doi: 10.1346/CCMN.1996.0440615

[15]

Kleeberg R, Monecke T, Hillier S, et al. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples?[J].Clays and Clay Minerals, 2008, 56(4): 404-415. doi: 10.1346/CCMN.2008.0560402

[16]

马礼敦. X射线粉末衍射仪用试样的制作[J]. 上海计量测试, 2008, (5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

Ma L D. Preparation of the samples for X-ray powder diffractometers[J].Shanghai Measurement and Testing, 2008, (5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

[17]

Zhou X, Liu D, Bu H, et al. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review[J].Solid Earth Sciences, 2018, 3: 16-29. doi: 10.1016/j.sesci.2017.12.002

[18]

冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667.

Ran J, Guo C F, Du G, et al. Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J]. Rock and Mineral Analysis, 2019, 38(6): 660-667.

[19]

Toby B H. EXPGUI, a graphical user interface for GSAS[J].Journal of Applied Crystallography, 2001, 34: 210-213. doi: 10.1107/S0021889801002242

[20]

陈爱清, 薛雍, 徐洪柳, 等. Rietveld定量方法在蒸发岩矿物组分分析中的精确度评价和误差来源[J]. 岩矿测试, 2017, 36(4): 374-381.

Chen A Q, Xue Y, Xu H L, et al. Assessment of accuracy and error sources of the Rietveld quantitative phase analysis method in mineral contents of evaporites[J]. Rock and Mineral Analysis, 2017, 36(4): 374-381.

[21]

Zhang G, Germaine J T, Martin R T, et al. A simple sample-mounting method for radndom powder X-ray diffraction[J].Clays and Clay Minerals, 2003, 51(2): 218-225. doi: 10.1346/CCMN.2003.0510212

[22]

彭观良, 杨建坤, 兰勇, 等. 择优取向对X射线衍射积分强度的影响[J]. 大学物理实验, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016

Peng G L, Yang J K, Lan Y, et al. The effect of preferred orientation on X-ray diffraction integral intensity[J].Physical Experimental of College, 2007, 20(3): 56-58. doi: 10.3969/j.issn.1007-2934.2007.03.016

[23]

Jenkins R, Fawcett T G, Smith D K, et al. JCPDS-International centre for diffraction data sample preparation methods in X-ray powder diffraction[J].Powder Diffraction, 1986, 1(2): 51-63. doi: 10.1017/S0885715600011581

[24]

Schingaro E, Lacalamita M, Scordari F, et al. 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study[J].American Mineralogist, 2013, 98: 709-717. doi: 10.2138/am.2013.4283

[25]

Scordari F, Schingaro E, Ventruti G, et al. Fluorophlogopite from Piano delle Concazze (Mt.Etna, Italy): Crystal chemistry and implications for the crystallization conditions[J].American Mineralogist, 2013, 98: 1017-1025. doi: 10.2138/am.2013.4225

[26] Brindley G W,Brown G. Crystal structures of clay minerals and their X-ray identification[M] . London: Mineralogical Society, 1980: 46-56.
[27]

郑振环,李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M] . 北京: 中国建材工业出版社, 2016: 20-23.

Zheng Z H,Li Q. Introduction to Rietveld refinement with X-ray powder diffraction data and GSAS software[M] . Beijing: China Building Material Industry Publishing House, 2016: 20-23.
[28]

陈昊鸿,雷芳. 粉末衍射理论与实践[M] . 北京: 高等教育出版社, 2016: 158-160.

Chen H H,Lei F. Powder diffraction theory and practice[M] . Beijing: Higher Education Press, 2016: 158-160.
[29]

Toby B H. R factors in Rietveld analysis: How good is good enough?[J].Powder Diffraction, 2006, 21(1): 67-70. doi: 10.1154/1.2179804

[30] Mottana E A,Sassi F P,Thompson J B. Micas: crystal chemistry and metamorphic petrology, reviews in mineralogy and geochemistry[M] . Washington: Mineralogical Society of America and the Geochemical Society, 2002: 1-90.
[31]

Pignatelli I, Faure F, Mosser-Ruck R, et al. Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica[J].Lithos, 2016, 266: 332-347.

[32]

陈爱清. 熔体中氟金云母生长机制与多型成因[D]. 北京: 中国科学院大学, 2019.

Chen A Q. Growth mechanism and polytype genesis of synthetic fluorophlogopite from melt[D]. Beijing: University of Chinese Academy of Sciences, 2019.

相似文献(共20条)

[1]

宋党育, 张军营, 郑楚光, 李建欣. X射线衍射数据分析系统评价. 岩矿测试, 2008, 27(3): 189-193.

[2]

孟庆国, 刘昌岭, 李承峰, 郝锡荦. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征. 岩矿测试, 2021, 40(1): 85-94. doi: 10.15898/j.cnki.11-2131/td.202005290077

[3]

冉敬, 郭创锋, 杜谷, 王凤玉. X射线衍射全谱拟合法分析蓝晶石的矿物含量. 岩矿测试, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025

[4]

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038

[5]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

[6]

赵燕平, 王兆周. X射线物相定量分析中消除择优取向的新方法—无压制样法. 岩矿测试, 1984, (3): 239-243.

[7]

苗煦, 史淼, 王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探. 岩矿测试, 2021, 40(4): 522-531. doi: 10.15898/j.cnki.11-2131/td.202012030155

[8]

吴乾荣. 择优取向在粘土矿物X射线衍射定量分析中的应用研究. 岩矿测试, 1996, (2): 147-149.

[9]

薛 雍, 江向峰, 钟玉锋. 标准曲线法X射线粉晶衍射直接分析滑石中微量石棉. 岩矿测试, 2010, 29(3): 322-324.

[10]

迟广成, 宋丽华, 赵爱林. X射线粉晶衍射仪分析磷化膜组成. 岩矿测试, 2007, 26(2): 163-164.

[11]

迟广成, 王娜, 吴桐. X射线粉晶衍射仪鉴别鸡血石. 岩矿测试, 2010, 29(1): 71-73.

[12]

曾江萍, 李小莉, 张楠, 王家松, 魏双, 王娜. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟. 岩矿测试, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

[13]

迟广成, 李俊杰, 钟辉, 温海成, 王娜. X射线粉晶衍射法分析磷化膜不同成分衍射强度比. 岩矿测试, 2008, 27(5): -.

[14]

李功顺. X射线粉晶衍射法分析磷化膜不同成分衍射强度比. 岩矿测试, 2008, 27(5): 392-394.

[15]

迟广成, 肖刚, 伍月, 陈英丽, 王海娇, 胡建飞. X射线粉晶衍射仪在大理岩鉴定与分类中的应用. 岩矿测试, 2014, 33(5): 698-705.

[16]

伍月, 迟广成, 刘欣. X射线粉晶衍射法在变粒岩鉴定与分类中的应用. 岩矿测试, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117

[17]

迟广成, 张泉, 赵爱林, 钟辉, 胡建飞. X射线粉晶衍射仪定量测量海泡石矿样的实验条件. 岩矿测试, 2012, 31(2): 282-286.

[18]

于艳, 温海成, 康延国, 迟广成. X射线粉晶衍射法在萤石矿药鉴定与质量评价中的应用. 岩矿测试, 2007, 26(6): 495-496499.

[19]

兰延, 陆太进, 陈伟明, 刘洋, 梁榕, 马瑛, 张小虎. 基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量. 岩矿测试, 2015, 34(2): 207-212. doi: 10.15898/j.cnki.11-2131/td.2015.02.009

[20]

迟广成, 宋丽华, 王娜, 崔德松, 周国兴. X射线粉晶衍射仪在山东蒙阴金伯利岩蚀变矿物鉴定中的应用. 岩矿测试, 2010, 29(4): 475-477.

计量
  • PDF下载量(3)
  • 文章访问量(991)
  • HTML全文浏览量(35)
  • 被引次数(0)
目录

Figures And Tables

X射线衍射旋转撒样法分析氟金云母多型组成与含量

陈爱清, 何宏平, 谭伟, 杨宜坪, 陶奇