【引用本文】 马万平, 温汉捷, 叶琴, 等. 巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒[J]. 岩矿测试, 2021, 40(4): 550-560. doi: 10.15898/j.cnki.11-2131/td.202101220013
MA Wan-ping, WEN Han-jie, YE Qin, et al. Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 550-560. doi: 10.15898/j.cnki.11-2131/td.202101220013

巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒

1. 

东华理工大学地球科学学院, 江西 南昌 330013

2. 

长安大学地球科学与资源学院, 陕西 西安 710054

3. 

中国科学院大学地球与行星科学学院, 北京 100049

收稿日期: 2021-01-22  修回日期: 2021-04-21  接受日期: 2021-05-17

基金项目: 国家重点研发计划项目"稀散矿产资源基地深部探测技术示范"(2017YFC0602500)

作者简介: 马万平, 硕士研究生, 地质学专业。E-mail: 1299704594@qq.com

通信作者: 温汉捷, 博士, 研究员, 主要从事"三稀"矿产成矿作用及元素、同位素研究。E-mail: wenhanjie@vip.gyig.ac.cn

Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry

1. 

School of Earth Sciences, East China University of Technology, Nanchang 330013, China

2. 

College of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China

3. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: WEN Han-jie, wenhanjie@vip.gyig.ac.cn

Received Date: 2021-01-22
Revised Date: 2021-04-21
Accepted Date: 2021-05-17

摘要:氢化物发生-原子荧光光谱法(HG-AFS)应用于测定地质样品中的痕量硒具有较高的灵敏度,但复杂的基质仍会增加分析难度,尤其是富含有机质样品与硫化物样品中的有机碳、复杂配合物和共存离子等带来的干扰,故样品前处理十分重要。采用常规的巯基棉(thiol cotton fibre,TCF)富集分离方法处理富含有机质样品与硫化物样品时,常会出现回收率不稳定、TCF过早饱和的现象。因此,本文针对富含有机质样品,使用双TCF柱法,通过两次吸附可以有效减少有机质的干扰;针对硫化物样品,可通过增加TCF的用量或者减少称样量来提高硒的回收率。标准物质和实际样品的测定结果表明优化的方法可满足分析要求,对富有机质样品,硒的回收率大于95.1%±0.37%;对硫化物样品,硒的回收率大于95.5%±1.92%。同时,研究也表明,采用微波消解处理样品,能够有效地避免硒在消解过程中的损失。改进后的方法提升了富集分离效果,适用于有机质和硫化物地质样品中的痕量硒(ng/g~μg/g级)分析要求。

关键词: 高碳高硫地质样品, , 微波消解, 巯基棉, 氢化物发生-原子荧光光谱法

要点

(1) 使用微波消解,减少硒(易挥发元素)的损失与实验时间。

(2) 使用巯基棉(TCF)分离纯化硒,减少复杂基质对分析测试的干扰。

(3) 改进后的方法适用于含有机质、硫化物的地质样品。

Determination of Trace Selenium in High-Carbon and High-Sulfur Geological Samples by Thiol Cotton Fiber Separation-Atomic Fluorescence Spectrometry

ABSTRACT

BACKGROUND:

Hydride generation-atomic fluorescence spectroscopy (HG-AFS) is highly sensitive for the determination of trace selenium in geological samples. However, the complex matrix increases the analysis difficulty, especially owing to interference caused by organic carbon, complicated complexes, and coexisting ions in samples rich in organic matter and sulfides. Therefore, sample pretreatment is important. The use of conventional thiol cotton fiber (TCF) to enrich and separate selenium often leads to unstable recovery and premature saturation of the TCF when dealing with samples rich in organic matter and sulfides.

OBJECTIVES:

To establish a method suitable for the determination of trace selenium in geological samples rich in organic matter and sulfides.

METHODS:

For samples rich in organic matter, a double TCF column (mTCF=0.15g) was used to carry out adsorption twice. The recovery for high-sulfur geological samples could be increased either by increasing the amount of TCF (mTCF ≤ 0.2g) or reducing the sample amount.

RESULTS:

The measurement results for the reference materials and actual samples showed that the optimized method satisfied the analysis requirements as selenium recoveries of >95.1% and >95.5% were achieved for the organic-rich and sulfide samples, respectively. Microwave digestion can effectively avoid the loss of selenium during digestion; the measured selenium content was consistent with that reported in the literature.

CONCLUSIONS:

The improved method is suitable for geological samples rich in organic matter and sulfides, which can be used to determine trace selenium (ng/g to μg/g levels) in geological samples.

KEY WORDS: high carbon and high sulfur geological samples, selenium, microwave digestion, thiol cotton fibre, hydride generation-atomic fluorescence spectrometry

HIGHLIGHTS

(1) Microwave digestion was used to reduce the loss of selenium (a volatile element) and the experimental time.

(2) Thiol cotton fiber (TCF) was used to separate and purify selenium, reducing the interference of the complex matrix.

(3) The improved method is suitable for geological samples containing organic matter or sulfides.

本文参考文献

[1]

U.S. Geological Survey. Mineral commodity summaries 2020[R]. U.S. Geological Survey, 2020, https://doi.org/10.3133/mcs2020.

[2]

陈炳翰, 丁建华, 叶会寿, 等. 中国硒矿成矿规律概要[J]. 矿床地质, 2020, 39(6): 1063-1077.

Chen B H, Ding J H, Ye H S, et al. Metallogenic regularity of selenium ore in China[J]. Mineral Deposits, 2020, 39(6): 1063-1077.

[3]

李静贤, 刘家军. 硒矿资源研究现状[J]. 资源与产业, 2014, 16(2): 90-97.

Li J X, Liu J J. Advances in selenium resource study[J]. Resources and Industries, 2014, 16(2): 90-97.

[4]

Wen H J, Carignan J. Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China[J].Geochimica Et Cosmochimica Acta, 2011, 75(6): 1411-1427. doi: 10.1016/j.gca.2010.12.021

[5]

涂光炽,高振敏,胡瑞忠. 分散元素地球化学及成矿机制[M] . 北京: 地质出版社, 2004: 1-153.

Tu G C,Gao Z M,Hu R Z. The geochemistry and ore-forming mechanism of the dispersed elements[M] . Beijing: Geological Publishing Housee, 2004: 1-153.
[6]

König S, Luguet A, Lorand J P, et al. Selenium and tellurium systematics of the Earth's mantle from high precision analyses of ultra-depleted orogenic peridotites[J].Geochimica Et Cosmochimica Acta, 2012, 86: 354-366. doi: 10.1016/j.gca.2012.03.014

[7]

Yierpan A, Knig S, Labidi J, et al. Recycled selenium in hot spot-influenced lavas records ocean-atmosphere oxygenation[J].Science Advances, 2020, 6(39): EABB6179. doi: 10.1126/sciadv.abb6179

[8]

Tian H, Ma Z Z, Chen X L, et al. Geochemical chara-cteristics of selenium and its correlation to other elements and minerals in selenium-enriched rocks in Ziyang County, Shaanxi Province, China[J].Journal of Earth Science, 2016, 27(5): 763-776. doi: 10.1007/s12583-016-0700-x

[9]

Quang T D, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112(3): 294-309.

[10]

李刚, 胡斯宪, 陈琳玲, 等. 原子荧光光谱分析技术的创新与发展[J]. 岩矿测试, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

Li G, Hu S X, Chen L L, et al. Innovation and development for atomic fluorescence spectrometry analysis[J]. Rock and Mineral Analysis, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

[11]

陈海杰, 马娜, 白金峰, 等. 基于外供氢气-氢化物-原子荧光光谱法测定地球化学样品中硒的研究[J]. 光谱学与光谱分析, 2020, 40(9): 2896-2900.

Chen H J, Ma N, Bai J F, et al. Study on determination of Se in geochemical samples by external supply H2-hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2896-2900.

[12]

张欣, 许俊玉, 范凡, 等. 断续流动氢化物发生-原子吸收光谱法测定地质样品中的硒[J]. 桂林理工大学学报, 2016, 36(1): 191-194. doi: 10.3969/j.issn.1674-9057.2016.01.026

Zhang X, Xu J Y, Fan F, et al. Determination of selenium in geological samples by intermittent-flow hydride generation atomic absorption spectrometry[J].Journal of Guilin University of Technology, 2016, 36(1): 191-194. doi: 10.3969/j.issn.1674-9057.2016.01.026

[13]

Marin L, Lhomme J, Carignan J, et al. GFAAS determination of selenium after separation with thiol cotton in lichens and plants: The importance of adding a mineral matrix before decomposition[J].Talanta, 2003, 61(2): 119-125. doi: 10.1016/S0039-9140(03)00272-8

[14]

Marin L, Lhomme J, Carignan J, et al. Determination of selen-ium concentration in sixty five reference materials for geochemical analysis by GFAAS after separation with thiol cotton[J].Geostandards Newsletter, 2001, 25: 317-324. doi: 10.1111/j.1751-908X.2001.tb00608.x

[15]

Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector coupled mass spectrometer[J].Geochimica Et Cosmochimica Acta, 2002, 66(18): 3191-3199. doi: 10.1016/S0016-7037(02)00918-3

[16]

Fan H F, Wen H J, Hu R Z, et al. Determination of total selenium in geological samples by HG-AFS after concentration with thiol cotton fiber[J]. Chinese Journal of Geochemistry, 2008, (1): 90-96.

[17]

Yu M Q, Liu G Q, Jin Q, et al. Determination of trace arsenic, antimony, selenium and tellurium in various oxidation states in water by hydride generation and atomic-absorption spectrophotometry after enrichment and separation with thiol cotton[J].Talanta, 1983, 30(4): 265-270. doi: 10.1016/0039-9140(83)80060-5

[18]

Yu M, Sun D, Tian W, et al. Systematic studies on adsorption of trace elements Pt, Pd, Au, Se, Te, As, Hg, Sb on thiol cotton fiber[J].Analytica Chimica Acta, 2002, 456(1): 147-155. doi: 10.1016/S0003-2670(02)00004-1

[19]

Yu M, Tian W, Sun D, et al. Systematic studies on adsorption of 11 trace heavy metals on thiol cotton fiber[J].Analytica Chimica Acta, 2001, 428(2): 209-218. doi: 10.1016/S0003-2670(00)01238-1

[20]

Shan X Q, Hu K J. Matrix modification for determination of selenium in geological samples by graphite-furnace atomic-absorption spectrometry after preseparation with thiol cotton fibre[J].Talanta, 1985, 32(1): 23-26. doi: 10.1016/0039-9140(85)80008-4

[21]

樊海峰, 温汉捷, 凌宏文, 等. 氢化物-原子荧光光谱法测定地质样中的痕量硒——不同溶样方式的比较[J]. 矿物岩石地球化学通报, 2005, 24(3): 200-203. doi: 10.3969/j.issn.1007-2802.2005.03.004

Fan H F, Wen H J, Ling H W, et al. Determination of total selenium in geological samples by hydride generation atomic fluorescence spectrometry-A comparative experiment of two different dissolution methods[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3): 200-203. doi: 10.3969/j.issn.1007-2802.2005.03.004

[22]

刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

Liu Y, Cao G S, Chen P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J].Chemistry and Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

[23]

杨萍, 李惠. 微波消解-氢化物发生-原子荧光法测定土壤中的砷[J]. 环境研究与监测, 2019, 32(3): 17-20.

Yang P, Li H. Determination of arsenic in soil by microwave digestion-hydride generation-atomic fluorescence spectrometry[J]. Environmental Research and Monitoring, 2019, 32(3): 17-20.

[24]

李媛媛, 纪轶. 微波消解技术在环境化学分析中的应用研究[J]. 中国资源综合利用, 2020, 38(10): 74-76. doi: 10.3969/j.issn.1008-9500.2020.10.020

Li Y Y, Ji Y. Research on application of microwave digestion technology in environmental chemistry analysis[J].China Resources Comprehensive Utilization, 2020, 38(10): 74-76. doi: 10.3969/j.issn.1008-9500.2020.10.020

[25]

赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 112-116.

Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica Et Mineralogica, 2019, 38(2): 112-116.

[26]

Kurzawa T, König S, Labidi J, et al. A method for Se isotope analysis of low ng-level geological samples via double spike and hydride generation MC-ICP-MS[J].Chemical Geology, 2017, 466: 219-228. doi: 10.1016/j.chemgeo.2017.06.012

[27]

Elwaer N, Hintelmann H. Selective separation of selen-ium(Ⅳ) by thiol cellulose powder and subsequent selenium isotope ratio determination using multicollector inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2008, 23(5): 733-743. doi: 10.1039/b801673a

[28]

贺欣宇, 王军, 张丽娟, 等. 巯基棉分离富集-多接收电感耦合等离子体质谱测量矿石中硒的同位素丰度[J]. 环境化学, 2010, 29(5): 982-983.

He X Y, Wang J, Zhang L J, et al. Determination of selenium isotope abundance in ores by inductively coupled plasma mass spectrometry after sulfhydryl cotton separation and enrichment[J]. Environmental Chemistry, 2010, 29(5): 982-983.

[29]

Stueeken E E, Foriel J, Nelson B K, et al. Selenium isotope analysis of organic-rich shales: Advances in sample preparation and isobaric interference correction[J].Journal of Analytical Atomic Spectrometry, 2013, 28(11): 1734-1749. doi: 10.1039/c3ja50186h

[30]

García J B, Krachler M, Chen B, et al. Improved deter-mination of selenium in plant and peat samples using hydride generation-atomic fluorescence spectrometry (HG-AFS)[J].Analytica Chimica Acta, 2005, 534(2): 255-261. doi: 10.1016/j.aca.2004.11.043

[31]

von Strandmann P, Coath C D, Catling D C, et al. Analysis of mass dependent and mass independent selenium isotope variability in black shales[J].Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1648-1659. doi: 10.1039/C4JA00124A

[32]

张文河, 穆桂金. 烧失法测定有机质和碳酸盐的精度控制[J]. 干旱区地理, 2007, (3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021

Zhang W H, Mu G J. Precision control on measuring organic and carbonate content with loss on ignition method[J].Arid Land Geography, 2007, (3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021

[33]

成勇. 电感耦合等离子体质谱法(ICP-MS)测定油品中铁, 铜, 铅, 锡, 砷, 银, 铬, 镍, 钒[J]. 中国无机分析化学, 2011, 1(4): 64-67. doi: 10.3969/j.issn.2095-1035.2011.04.0016

Cheng Y. Determination of iron, copper, lead, tin, arsenic, silver, chromium, nickel and vanadium in oil by inductively coupled plasma mass spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4): 64-67. doi: 10.3969/j.issn.2095-1035.2011.04.0016

[34]

张羽旭, 温汉捷, 樊海峰, 等. 地质样品中Mo同位素测定的前处理方法研究[J]. 分析化学, 2009, 37(2): 216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010

Zhang Y X, Wen H J, Fan H F, et al. Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J].Chinese Journal of Analytical Chemistry, 2009, 37(2): 216-220. doi: 10.3321/j.issn:0253-3820.2009.02.010

[35]

刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 164-171.

Liu X L, Sun W J, Wen T Y, et al. Determination of 23 metal elements in detailed soil survey samples by inductively coupled plasma-mass spectrometry with three acid stepwise digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 164-171.

[36]

邬景荣, 许廷波, 符峙宗, 等. 微波消解-电感耦合等离子体原子发射光谱法测定膨润土中6种元素[J]. 理化检验(化学分册), 2020, 56(2): 185-190.

Wu J R, Xu T B, Fu S Z, et al. ICP-AES determination of 6 elements in bentonite with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(2): 185-190.

[37]

Savard D, Bédard L P, Barnes S J, et al. TCF selenium precon-centration in geological materials for determination at sub-μg·g-1 with INAA (Se/TCF-INAA)[J].Talanta, 2006, 70(3): 566-571. doi: 10.1016/j.talanta.2006.01.010

[38]

董亚妮, 田萍, 熊英, 等. 焙烧分离-氢化物发生-原子荧光光谱法测定铜铅锌矿石中的硒[J]. 岩矿测试, 2011, 30(2): 164-168. doi: 10.3969/j.issn.0254-5357.2011.02.008

Dong Y N, Tian P, Xiong Y, et al. Determination of trace selenium in copper ore, lead ore and zinc ore by hydride generation-atomic fluorescence spectrometry with baking separation[J].Rock and Mineral Analysis, 2011, 30(2): 164-168. doi: 10.3969/j.issn.0254-5357.2011.02.008

[39]

管希云, 李玉珍. 表面活性剂的应用研究——动力学光度法测定痕量硒碲[J]. 岩矿测试, 2000, 29(1): 14-19. doi: 10.3969/j.issn.0254-5357.2000.01.004

Guan X Y, Li Y Z. Application research on surfactant-kinetic spectrophotometric determination of trace selenium and tellurium[J].Rock and Mineral Analysis, 2000, 29(1): 14-19. doi: 10.3969/j.issn.0254-5357.2000.01.004

相似文献(共20条)

[1]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[2]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[3]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[4]

王党辉, 孙泽坤, 郑民奇. 微波消解-氢化物发生原子荧光光谱法测定植物样品中硒. 岩矿测试, 2007, 26(5): 416-418.

[5]

陶秋丽, 韩张雄, 熊英, 牟乃仓, 雒虹, 王曦婕. 微波消解-氢化物发生原子荧光光谱法测定粉煤灰中的硒. 岩矿测试, 2013, 32(3): 445-448.

[6]

奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I.

[7]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒. 岩矿测试, 2012, 31(6): 980-984.

[8]

杨常青, 张双双, 吴楠, 侯艳娜, 徐彩春, 徐志彬. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究. 岩矿测试, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

[9]

王未肖, 李迎霞, 哈婧. 巯基棉分离富集-荧光分光光度法测定地下水中的痕量硒. 岩矿测试, 2005, (4): 311-313.

[10]

凤海元, 时晓露, 黄勤. 微波消解-氢化物发生原子荧光光谱法测定茶园土壤中的铅. 岩矿测试, 2013, 32(1): 53-57.

[11]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

[12]

董亚妮, 田萍, 熊英, 胡建平, 牟乃仓, 雒虹, 陶秋丽. 焙烧分离-氢化物发生-原子荧光光谱法测定铜铅锌矿石中的硒. 岩矿测试, 2011, 30(2): 164-168.

[13]

李刚, 张哲玮, 潘淑春. 碱性模式氢化发生原子荧光光谱法测定地质样品中痕量锗. 岩矿测试, 2004, (4): 295-299.

[14]

张宁, 郭秀平, 李星, 申玉民, 姜云军, 安彩秀, 薛志坤. 巯基棉分离富集ICP-AES法测定高盐冶金废水中痕量铅镉铜银. 岩矿测试, 2014, 33(4): 551-555.

[15]

石静, 白金峰, 范永贵, 卢荫庥. 银的野外快速分析方法——巯基棉富集-Ag-TMK-DBS三元络合物光导比色法. 岩矿测试, 2010, 29(4): 335-340.

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

徐国栋, 葛建华, 贾慧娴, 杜谷, 程江, 董俊. 水浴浸提-氢化物发生-原子荧光光谱法同时测定 地质样品中痕量砷和汞. 岩矿测试, 2010, 29(4): 391-394.

[18]

卢普相, 张朝阳, 马名扬, 毕鸿亮, 李幼菊, 张丽佳. 微波辅助提取-氢化物发生原子荧光光谱法测定土壤中无机砷. 岩矿测试, 2007, 26(5): 372-376.

[19]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[20]

周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216.

计量
  • PDF下载量(12)
  • 文章访问量(1021)
  • HTML全文浏览量(33)
  • 被引次数(0)
目录

Figures And Tables

巯基棉富集分离-原子荧光光谱法测定高碳高硫地质样品中痕量硒

马万平, 温汉捷, 叶琴, 赵越, 杨季华