【引用本文】 张雅, 李全忠, 闫峻, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637-649. doi: 10.15898/j.cnki.11-2131/td.202101130005
ZHANG Ya , LI Quan-zhong , YAN Jun , et al. Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649. doi: 10.15898/j.cnki.11-2131/td.202101130005

LA-ICP-MS独居石U-Th-Pb测年方法研究

合肥工业大学资源与环境工程学院, 安徽 合肥 230009

收稿日期: 2021-01-13  修回日期: 2021-04-15 

基金项目: 国家自然科学基金青年基金项目(40903013);国家自然科学基金项目(42030801)

通信作者: 李全忠,博士,副教授,从事地球化学及地质年代学研究。E-mail:liqzhong@hfut.edu.cn。

Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

Corresponding author: LI Quan-zhong , liqzhong@hfut.edu.cn

Received Date: 2021-01-13
Revised Date: 2021-04-15

摘要:相比LA-ICP-MS锆石U-Pb测年,独居石在一些年轻地质体或流体作用下的矿物定年中更具优势,具有很好的应用前景。然而,大多数独居石Th含量较高(可达7%),包裹体较多,另外随着独居石定年标样不断消耗,存量越来越少,也限制了独居石U-Th-Pb同位素测年的发展与应用。前人利用LA-ICP-MS探究合适的独居石U-Th-Pb测年实验条件,主要是改变激光器的参数,而未对ICP-MS的参数进行系统研究。本文通过改变激光器参数(束斑直径和激光频率)和ICP-MS参数(232Th驻留时间),分别在束斑直径为24μm、16μm和10μm,激光频率为3Hz、4Hz和5Hz,232Th驻留时间为10ms、6ms、3ms和1ms的条件下进行U-Th-Pb测年。最后以独居石RW-1为标样,对独居石样品Bananeira进行校正,期望得到独居石U-Th-Pb测年的最佳条件。结果表明:束斑直径为16μm,232Th驻留时间为3ms或1ms,能量密度为4J/cm2,激光频率为5Hz,载气He流速为0.35L/min,载气Ar流速为0.95L/min的实验条件下适合独居石测年,这两种条件下Bananeira的207Pb/235U加权平均年龄分别为510.7±8.6Ma (MSWD=0.87)、513.8±5.7Ma (MSWD=0.38,推荐值507.7±1.3Ma),误差在0.59%和1.20%左右;208Pb/232Th加权平均年龄分别为496.9±8.6Ma (MSWD=0.596)、499.8±5.6Ma (MSWD=0.37,推荐值497.6±1.6Ma),误差在0.14%和0.44%左右。并利用此条件对黄山花岗岩(HS-1)进行独居石U-Th-Pb测年,其207Pb/235U加权平均值在128.3±2.4Ma (MSWD=0.73),与本次测定该岩体的锆石年龄数据(127.0±2.1Ma,MSWD=0.93)在误差范围内一致,验证了本实验建立的独居石U-Th-Pb定年方法可靠。

关键词: LA-ICP-MS, 独居石U-Th-Pb测年, 激光束斑, 232Th驻留时间

Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS

KEY WORDS: LA-ICP-MS, monazite U-Th-Pb isotopic dating, laser spot, dwelling time of 232Th

本文参考文献

[1]

Williams M L, Jercinovic M J, Hetherington C J.Microprobe monazite geochronology:Understanding geologic processes by integrating composition and chronology[J].Annual Review of Earth and Planetary Sciences, 2007, 35(1):137-175.

[2]

Chiaradia M, Schaltegger U, Spikings R, et al.How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?-An invited paper[J].Economic Geology and the Bulletin of the Society of Economic Geologists, 2013, 108(4):565-584.

[3]

Wu Y B, Wang H, Gao S, et al.LA-ICP-MS monazite U-Pb age and trace element constraints on the granulite-facies metamorphism in the Tongbai Orogen, central China[J].Journal of Asian Earth Sciences, 2014, 82:90-102.

[4]

Hogdahl K, Majka J, Sjostrom H, et al.Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen:Implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden[J].Contributions to Mineralogy and Petrology, 2012, 163(1):167-188.

[5]

吴黎光, 李献华.独居石微区同位素和元素分析及地质应用[J].矿物岩石地球化学通报, 2020, 39(6):1077-1094

, 1064, 1066. Wu L G, Li X H.Isotopic and elemental analysis of monazite and its geological application[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6):1077-1094, 1064, 1066.

[6]

Meldrum A, Boatner L A, Weber W J, et al.Radiation damage in zircon and monazite[J].Geochimica Et Cosmochimica Acta, 1998, 62(14):2509-2520.

[7]

Liu X C, Wu F Y, Yu L J, et al.Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J].Tectonophysics, 2016, 667:163-175.

[8]

胡国辉, 周艳艳, 张拴宏, 等.吕梁地区古元古代花岗片麻岩成因及变质时代:锆石和独居石U-Pb年龄及锆石Hf同位素证据[J].岩石学报, 2020, 36(12):3631-3653.

Hu G H, Zhou Y Y, Zhang S H, et al.Petrogenesis and metamorphic age of Palaeoproterozoic granitic gneisses in Lüliang area:Constraints from zircon and monazite U-Pb ages and Hf isotopes[J].Acta Petrologica Sinica, 2020, 36(12):3631-3653.

[9]

Barnes C, Majka J, Schneider D, et al.High-spatial re-solution dating of monazite and zircon reveals the timing of subduction-exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides)[J].Contributions to Mineralogy and Petrology, 2019, 174(1):5.

[10]

Skipton D R, Schneider D A, Mcfarlane C, et al.Multi-stage zircon and monazite growth revealed by depth profiling and in situ U-Pb geochronology:Resolving the Paleoproterozoic tectonics of the Trans-Hudson Orogen on southeastern Baffin Island, Canada[J].Precambrian Research, 2016, 285:272-298.

[11]

王佳营, 李志丹, 张祺, 等.东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代:来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J].地质学报, 2020, 94(10):2946-2964.

Wang J D, Li Z D, Zhang Q, et al.Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling:Evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J].Acta Geologica Sinica, 2020, 94(10):2946-2964.

[12]

Lehmann B, Zoheir B A, Neymark L A, et al.Monazite and cassiterite U-Pb dating of the Abu Dabbab rare-metal granite, Egypt:Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield[J].Gondwana Research, 2020, 84:71-80.

[13]

Yan T, Liu D, Si C, et al.Coupled U-Pb geochronology of monazite and zircon for the Bozhushan batholith, southeast Yunnan Province, China:Implications for regional metallogeny[J].Minerals, 2020, 10(3):239-253.

[14]

Martial F T, Rigobert T, Anne S A, et al.Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah Leucogranite (northern Cameroon):Constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite[J].Minerals, 2018, 8(5):2-36.

[15]

Machado N, Gauthier G.Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICP-MS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J].Geochimica Et Cosmochimica Acta, 1996, 60(24):5063-5073.

[16]

Paquette J L, Tiepolo M.High resolution (5μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS[J].Chemical Geology, 2007, 240(3-4):222-237.

[17]

王倩, 侯可军.独居石LA-ICP-MS微区原位U-Pb同位素年龄测定[J].地质学报, 2015, 89(10):41-43.

Wang Q, Hou K J.LA-ICP-MS in situ U-Pb isotopic dating of monazite[J].Acta Geologica Sinica, 2015, 89(10):41-43.

[18]

汪双双, 韩延兵, 李艳广, 等.利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J].岩矿测试, 2016, 35(4):349-367.

Wang S S, Han Y B, Li Y G, et al.U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J].Rock and Mineral Analysis, 2016, 35(4):349-367.

[19]

洪文兴, 朱祥坤.独居石微粒微区成分分布的研究[J].高校地质学报, 2000, 6(2):167-172.

Hong W X, Zhu X K.Study on the composition distribution of monazite particles[J].Geological Journal of China Universities, 2000, 6(2):167-172.

[20]

Richter M, Nebel-Jacobsen Y, Nebel O, et al.Assess-ment of five monazite reference materials for U-Th/Pb dating using laser-ablation ICP-MS[J].Geosciences, 2019, 9(9):391-412.

[21]

Kohn M J, Vervoort J D.U-Th-Pb dating of monazite by single collector ICP-MS:Pitfalls and potential[J].Geochemistry, Geophysics, Geosystems, 2008, 9(4):1-16.

[22]

Gilbert S, Olin P, Thompson J, et al.Matrix dependency for oxide production rates by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(3):638-646.

[23]

崔玉荣, 周红英, 耿建珍, 等.LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定[J].地球学报, 2012, 33(6):865-876.

Cui Y R, Zhou H Y, Geng J Z, et al.In situ LA-MC-ICP-MS U-Pb isotopic dating of monazite[J].Acta Geoscientica Sinica, 2012, 33(6):865-876.

[24]

Ling X X, Magdalena H, Huyskens, et al.Monazite RW-1:A homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis[J].Mineral Petrology, 2017, 111(2):163-172.

[25]

Gonçalves O G, Lana C, Scholz R, et al.An assessment of monazite from the Itambé pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite[J].Chemical Geology, 2016, 424:30-50.

[26]

Kylander-Clark A, Hacker B R, Cottle J M.Laser-ablation split-stream ICP petrochronology[J].Chemical Geology, 2013, 345:99-112.

[27]

Xue H M, Wang Y G, Ma F, et al.Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusion:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton, China[J].Science in China, 2009, 52(11):1756-1770.

[28]

Wu F Y, Ji W Q, Sun D H, et al.Zircon U-Pb geo-chronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J].Lithos, 2012, 150:6-25.

[29]

Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43.

[30]

Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petroleum Science and Engineering, 2010, 51(1-2):537-571.

[31]

Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55(15):1535-1546.

[32]

吴福元, 刘志超, 刘小驰, 等.喜马拉雅淡色花岗岩[J].岩石学报, 2015, 31(1):1-36.

Wu F Y, Liu Z C, Liu X C, et al.Himalayan leucogranite[J].Acta Petrologica Sinica, 2015, 31(1):1-36.

[33]

Susanne B, Felix O, Martin M.Th-Pb versus U-Pb isotope systematics in allanite from cogenetic rhyolite and granodiorite:Implications for geochronology[J].Earth & Planetary Science Letters, 1994, 124(1-4):149-159.

[34]

Grand'Homme A, Janots E, Bosse V, et al.Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y):Evidence from a large-scale regional study in clefts from the western Alps[J].Mineralogy & Petrology, 2016, 110(6):787-807.

[35]

周红升, 马昌前, 张超, 等.华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类:年代学、地球化学及其启示[J].岩石学报, 2008, 24(1):49-64.

Zhou H S, Ma C Q, Zhang C, et al.Yanshanian alnminons A-type granitoids in the Chunshui of Biyang, south margin of North China Craton:Implications from petrology, geochronology and geochemistry[J].Acta Petrologica Sinica, 2008, 24(1):49-64.

[36]

张舒, 张招崇, 艾羽, 等.安徽黄山花岗岩岩石学、矿物学及地球化学研究[J].岩石学报, 2009, 25(1):25-38.

Zhang S, Zhang Z C, Ai Y, et al.The petrology, mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province[J].Acta Petrologica Sinica, 2009, 25(1):25-38.

[37]

薛怀民, 汪应庚, 马芳, 等.高度演化的黄山A型花岗岩:对扬子克拉通东南部中生代岩石圈减薄的约束?[J].地质学报, 2009, 83(2):247-259.

Xue H M, Wang Y G, Ma F, et al.The Huangshan A-type granites with tetrad REE:Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton?[J].Acta Geologica Sinica, 2009, 83(2):247-259.

[38]

Belousova E, Griffin W, O'Reilly S Y, et al.Igneous zircon:Trace element composition as an indicator of source rock type[J].Contributions to Mineralogy & Petrology, 2002, 143(5):602-622.

相似文献(共20条)

[1]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[2]

王辉, 汪方跃, 关炳庭, 盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

[3]

靳梦琪, 李艳广, 王鹏, 汪双双, 黎卫亮. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 2020, 39(2): 274-284. doi: 10.15898/j.cnki.11-2131/td.201908120124

[4]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 449-460. doi: 10.15898/j.cnki.11-2131/td.201901160007

[5]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[6]

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129

[7]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[8]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[9]

胡志中, 李佩, 蒋璐蔓, 王通洋, 杜谷, 杨波. 古代玻璃材料LA-ICP-MS组分分析及产源研究. 岩矿测试, 2020, 39(4): 505-514. doi: 10.15898/j.cnki.11-2131/td.201909210134

[10]

李阳, 邹灏, 刘行, 蒋修未, 李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试, 2020, 39(2): 300-310. doi: 10.15898/j.cnki.11-2131/td.201812260141

[11]

王忠强, 李超, 江小均, 周利敏, 赵九江, 严清高, 李亚东, 陈耀坤. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示. 岩矿测试, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118

[12]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[13]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[14]

黄新鹏. 福建霞浦大湾钼铍矿区碱长花岗岩LA-ICP-MS锆石U-Pb测年研究. 岩矿测试, 2018, 37(5): 572-579. doi: 10.15898/j.cnki.11-2131/td.201710160165

[15]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[16]

余明刚, 赵希林, 钱迈平, 段政, 张雪辉, 万浩章, 肖茂章, 孙建东. 江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义. 岩矿测试, 2015, 34(1): 138-149. doi: 10.15898/j.cnki.11-2131/td.2015.01.018

[17]

王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 2015, 34(5): 592-599. doi: 10.15898/j.cnki.11-2131/td.2015.05.016

[18]

万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 赣东北朱溪铜钨矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 岩矿测试, 2015, 34(4): 494-502. doi: 10.15898/j.cnki.11-2131/td.2015.04.019

[19]

赵希林, 余明刚, 姜杨, 李亚楠, 靳国栋, 陈志洪, 邢光福. LA-ICP-MS锆石U-Pb同位素定年:对闽北地区稻香组形成时代的制约. 岩矿测试, 2014, 33(6): 892-899.

[20]

赵泽霖, 李俊建, 党智财, 付超, 唐文龙, 王守光, 刘利双, 赵丽君. 内蒙古黄花滩铜镍矿区辉长岩LA-ICP-MS锆石U-Pb定年及地球化学特征. 岩矿测试, 2016, 35(2): 208-216. doi: 10.15898/j.cnki.11-2131/td.2016.02.014

计量
  • PDF下载量(16)
  • 文章访问量(1115)
  • 被引次数(0)
目录

Figures And Tables

LA-ICP-MS独居石U-Th-Pb测年方法研究

张雅, 李全忠, 闫峻, 谢建成, 杨青亮, 高玲