【引用本文】 高冉, 饶竹, 郭晓辰, . 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用[J]. 岩矿测试, 2021, 40(6): 973-986. doi: 10.15898/j.cnki.11-2131/td.202011170148
GAO Ran, RAO Zhu, GUO Xiao-chen. Analysis of 91 Pesticide Residues in Groundwater by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(6): 973-986. doi: 10.15898/j.cnki.11-2131/td.202011170148

地下水中91种农药多残留气相色谱-质谱分析方法研究及应用

1. 

中国冶金地质总局山东局测试中心, 山东 济南 250014

2. 

国家地质实验测试中心, 北京 100037

3. 

自然资源部生态地球化学重点实验室, 北京 100037

收稿日期: 2020-11-17  修回日期: 2021-04-22  接受日期: 2021-11-16

基金项目: 中国地质调查局地质调查项目(DD20190323,DD20189627)

作者简介: 高冉, 硕士研究生, 主要从事环境有机污染物分析方法研究。E-mail: 1015933139@qq.com

通信作者: 饶竹, 硕士, 研究员, 主要从事环境有机污染物监测。E-mail: raozhu@126.com

Analysis of 91 Pesticide Residues in Groundwater by Gas Chromatography-Mass Spectrometry

1. 

The Testing Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China

2. 

National Research Center for Geoanalysis, Beijing 100037, China

3. 

Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China

Corresponding author: RAO Zhu, raozhu@126.com

Received Date: 2020-11-17
Revised Date: 2021-04-22
Accepted Date: 2021-11-16

摘要:地下水中多种农药快速检测是全面表征地下水水质、确保地下水安全的重要技术支撑。本文结合现有检测标准和文献中农药需分类分别前处理和测试的问题,采用气相色谱-质谱仪,通过对水样前处理方法和气相色谱-质谱分析条件进行选择和优化,建立了地下水中91种农药气相色谱-质谱同时测定的快速分析方法。经优化,目标物采用脉冲不分流进样,Zebron Multiresidue-2色谱柱分离,分段选择离子扫描,内标法定量,多数农药在1.0~1000μg/L浓度范围内线性良好,相关系数在0.9901~0.9997之间。水样经二氯甲烷液液萃取浓缩后上机测试,各农药方法检出限为3.1~12.5ng/L,平均加标回收率在54.3%~129%之间,相对标准偏差(RSD)为1.2%~20%。本方法快速、简单,准确度高,不仅显著提高了地下水中多种类农药残留分析效率,降低了分析成本;而且方法更适合大批量地下水样品的快速筛查,从而保证了样品分析的时效性。该方法已成功应用于全国地下水污染调查专项。

关键词: 地下水, 农药多残留, 气相色谱-质谱法, 快速分析

要点

(1) 采用液液萃取结合气相色谱-质谱法,建立了地下水中91种农药多残留快速分析方法。

(2) 该方法对农药涵盖的种类和数量多,且检出限低、灵敏度高,可用于地下水中多类别农药快速筛查。

(3) 对中国7个省市231个地下水样品分析,杀虫剂和除草剂都有检出,提出有必要加强对全国地下水中农药残留分析和监测。

Analysis of 91 Pesticide Residues in Groundwater by Gas Chromatography-Mass Spectrometry

ABSTRACT

BACKGROUND:

Fast screening of multiple pesticides in groundwater is an important technical support for comprehensively characterizing groundwater quality and ensuring groundwater safety.

OBJECTIVES:

To establish a rapid, easy and highly efficient method for the determination of 91 pesticides in groundwater.

METHODS:

By selecting and optimizing the water sample pretreatment method and gas chromatography-mass spectrometry analysis conditions, a rapid analysis method for the simultaneous determination of 91 pesticides in groundwater by gas chromatography-mass spectrometry (GC-MS) was established. The targets were determined by GC-MS and quantified by an internal standard. After optimization, the target substance adopts pulsed splitless injection, separated by Zebron Multiresidue-2 chromatographic column, and segmented selective ion scanning.

RESULTS:

Under the optimized conditions, pesticides showed good linearity with the correlation coefficient between 0.9901 and 0.9997 in the concentration range of 1.0-1000μg/L. The water sample was subjected to liquid-liquid extraction and concentration of dichloromethane and then tested on the machine, yielding method detection limits (MDLs) of 3.1-12.5ng/L, the average recoveries of 54.3%-129%, and the relative standard deviation (RSD) of 1.2% to 20%.

CONCLUSIONS:

Compared to previous studies, the method not only greatly improves the efficiency, reduces the cost of analysis, ensures the effectiveness of sample analysis, but also has wide applicability, high accuracy and high sensitivity. The method is more suitable for analysis of large batches of samples, which ensures the timeliness of sample analysis. The method has been successfully applied to the national groundwater pollution survey.

KEY WORDS: groundwater, pesticide residues, gas chromatography-mass spectrometry, fast analysis

HIGHLIGHTS

(1) A rapid method for the determination of 91 pesticides in groundwater was established, by liquid-liquid extraction-gas chromatography-mass spectrometry.

(2) The method not only covers more types and quantities of pesticides, but also has a lower method detection limit, high sensitivity, and good accuracy. It can be used for rapid screening of multiple types of pesticides in groundwater.

(3) The established method was used to analyze 231 groundwater samples from 7 provinces in China. Insecticides and herbicides were found, which strengthens the need for analysis and monitoring of pesticide residues in groundwater.

本文参考文献

[1]

郭婕, 张燕, 胡振国, 等. 环境水样中农药污染分析技术研究进展[J]. 岩矿测试, 2021, 40(1): 16-32.

Guo J, Zhang Y, Hu Z G, et al. A review of pesticide pollution analysis techniques for environmental water samples[J]. Rock and Mineral Analysis, 2021, 40(1): 16-32.

[2]

孙肖瑜, 王静, 金永堂, 等. 我国水环境农药污染现状及健康影响研究进展[J]. 环境与健康杂志, 2009, 26(7): 649-652.

Sun X Y, Wang J, Jin Y T, et al. Advances in research on pesticide pollution to the aquatic environment and health impact in China[J]. Journal of Environmental Health, 2009, 26(7): 649-652.

[3]

叶凯, 孙玉川, 贾亚男, 等. 岩溶地下水水体中有机氯农药和多氯联苯的残留特征及健康风险评价[J]. 环境科学, 2020, 41(12): 5448-5457.

Ye K, Sun Y C, Jia Y N, et al. Residual characteristics and health assessment analysis of OCPs and PCBs in karst groundwater[J]. Environmental Science, 2020, 41(12): 5448-5457.

[4]

周洋, 朱恒华, 刘治政, 等. 山东省海岸带地区地下水有机污染特征分析[J]. 山东国土资源, 2020, 36(8): 40-47.

Zhou Y, Zhu H H, Liu Z Z, et al. Analysis on organic pollution characteristics of groundwater in coastal area of Shandong Province[J]. Shandong Land and Resources, 2020, 36(8): 40-47.

[5]

Mahai G, Wan Y J, Xia W, et al. Neonicotinoid insecticides in surface water from the central Yangtze River, China[J].Chemosphere, 2019, 229: 452-460. doi: 10.1016/j.chemosphere.2019.05.040

[6]

Zhou Y T, Wu J X, Wang B, et al. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China[J].Environmental Pollution, 2020, 265: 114953. doi: 10.1016/j.envpol.2020.114953

[7]

Rahman M, Hoque M S, Bhowmik S, et al. Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method[J]. Heliyon, doi.org/10.1016/j.heliyon.2021.e06390.

[8]

朱仁愿, 丁辉, 杨志敏, 等. 当归、党参、黄芪和甘草中农药多组分残留检测技术的研究进展[J]. 中国现代应用医学, 2021, 38(3): 371-376.

Zhu R Y, Ding H, Yang Z M, et al. Research advances in the detection technology of pesticide residues in Angelicae Sinensis Radix, Codonopsis Radix, Astragali Radix and Glycyrrhizae Radix et Rhizoma[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(3): 371-376.

[9]

吴剑平, 张婧, 周悦榕, 等. 超高效液相色谱-静电轨道阱质谱正负切换同时筛查定量谷物饲料中的51种农药残留[J]. 中国兽药杂志, 2018, 52(11): 47-58.

Wu J P, Zhang J, Zhou Y R, et al. Synchronous screening and quantitation of 51 pesticides residue in grain feed by ultra performance liquid chromatography-orbitrap mass spectrometry with positive and negative switching mode[J]. Chinese Journal of Veterinary Drug, 2018, 52(11): 47-58.

[10]

叶茂盛, 孙秀梅, 郝青, 等. 水产品中有机磷农药多残留的固相萃取-气相色谱串联质谱测定[J]. 浙江海洋大学学报(自然科学版), 2019, 38(2): 174-179. doi: 10.3969/j.issn.1008-830X.2019.02.013

Ye M S, Sun X M, Hao Q, et al. Determination of organophosphorus pesticide residues in aquatic products by solid phase extraction coupled with gas chromatography tandem mass spectrometry[J].Journal of Zhejiang Ocean University (Natural Science), 2019, 38(2): 174-179. doi: 10.3969/j.issn.1008-830X.2019.02.013

[11]

Acosta-Dacal A, Rial-Berriel C, Díaz-Díaz R, et al. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil[J].Science of the Total Environment, 2021, 753: 142015. doi: 10.1016/j.scitotenv.2020.142015

[12]

Tan H D, Li Q F, Zhang H J, et al. Pesticide residues in agricultural topsoil from the Hainan tropical riverside basin: Determination, distribution, and relationships with planting patterns and surface water[J].Science of the Total Environment, 2020, 722: 137856. doi: 10.1016/j.scitotenv.2020.137856

[13]

郭晓辰, 饶竹, 高冉, 等. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留[J]. 岩矿测试, 2014, 33(3): 406-412. doi: 10.3969/j.issn.0254-5357.2014.03.020

Guo X C, Rao Z, Gao R, et al. Determination of 24 pesticides including pyrethroids, organochlorines and chlorothalonil in underground water by gas chromatography[J]. Rock and Mineral Analysis, 2014, 33(3): 406-412. doi: 10.3969/j.issn.0254-5357.2014.03.020

[14]

Xiao Z W, He M, Chen B B, et al. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples[J].Talanta, 2016, 156-157: 126-133. doi: 10.1016/j.talanta.2016.05.001

[15]

王红斌, 赵田甜, 李桂镇, 等. 多壁碳纳米管固相萃取-高效液相色谱法测定水中7种三唑类农药残留[J]. 环境污染与防治, 2015, 37(4): 42-46.

Wang H B, Zhao T T, Li G Z, et al. Determination of seven triazole pesticides residues in water by MWCNTs-SPE-HPLC[J]. Environmental Pollution and Prevention, 2015, 37(4): 42-46.

[16]

Zhou Q X, Wu Y L, Sun Y, et al. Magnetic polyamidoamine dendrimers for magnetic separation and sensitive determination of organochlorine pesticides from water samples by high-performance liquid chromatography[J].Journal of Environmental Sciences, 2021, 102: 64-73. doi: 10.1016/j.jes.2020.09.005

[17]

严妍, 谢飞. 固相萃取GC-MS法测定生活饮用水中有机磷和拟除虫菊酯类农药残留[J]. 绿色科技, 2020, (2): 98-100. doi: 10.3969/j.issn.1674-9944.2020.02.033

Yan Y, Xie F. Determination of organophosphorus and pyrethroid pesticides residues in domestic water by solid phase extraction-GC-MS[J].Journal of Green Science and Technology, 2020, (2): 98-100. doi: 10.3969/j.issn.1674-9944.2020.02.033

[18]

Nasiri M, Ahmadzadeh H, Amiri A, et al. Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: Application to apple juice and environmental water[J].Talanta, 2021, 227: 122078. doi: 10.1016/j.talanta.2020.122078

[19]

Liu S Y, Huang X H, Hu K J, et al. Development of a multiresidue method for endocrine-disrupting pesticides by solid phase extraction and determination by UHPLC-MS/MS from drinking water samples[J].Journal of Chromatographic Science, 2020, 58(3): 195-202. doi: 10.1093/chromsci/bmz089

[20]

赖国银, 林立毅, 丁亦男, 等. 固相萃取-超高效液相色谱-四极杆-飞行时间质谱法分析地表水中26种农药[J]. 环境化学, 2019, 38(5): 1065-1073.

Lai G Y, Lin L Y, Ding Y N, et al. Determination of 26 pesticides in surface water by solid phase extraction-ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Environmental Chemistry, 2019, 38(5): 1065-1073.

[21]

仇秀梅, 董学林, 刘亚东, 等. 液液萃取-气相色谱法同时测定地下水中16种有机氯农药[J]. 环境污染与防治, 2016, 38(11): 72-78.

Qiu X M, Dong X L, Liu Y D, et al. Simultaneous determination of 16 organochlorine pesticides in groundwater by liquid-liquid extraction/gas chromatography[J]. Prevention and Control of Environmental Pollution, 2016, 38(11): 72-78.

[22]

陆一夫, 胡小键, 丁昌明, 等. 地表水中23种有机氯农药的自动固相萃取-气相色谱-高分辨质谱联用测定法[J]. 环境与健康杂志, 2017, 34(2): 146-148.

Lu Y F, Hu X J, Ding C M, et al. Determination of 23 organochlorine pesticides in surface water by automatic solid phase extraction-gas chromatography-high resolution mass spectrometry[J]. Journal of Environmental Health, 2017, 34(2): 146-148.

[23]

张莉, 刘佳, 李晓亚, 等. 固相萃取膜富集-超声解吸-气相色谱法测定地下水中有机磷农药的含量[J]. 理化检验(化学分册), 2019, 55(7): 745-749.

Zhang L, Liu J, Li X Y, et al. Determination of organophosphorus pesticides in groundwater by gas chromatography with enrichment on solid phase extraction membrane[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(7): 745-749.

[24]

常青, 马虹英, 王方杰, 等. 脉冲不分流进样气相色谱-质谱法分析血浆中的10种镇静催眠药[J]. 理化检验(化学分册), 2011, 29(11): 1082-1086.

Chang Q, Ma H Y, Wang F J, et al. Determination of 10 sedative-hypnotics in human plasma using pulse splitless injection technique and gas chromatography-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2011, 29(11): 1082-1086.

相似文献(共20条)

[1]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[4]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[5]

李泽岩, 黄福杨, 刘丹丹, 刘艳君, 刘菲. 海河流域滹沱河冲洪积扇地下水中农药污染及分布特征. 岩矿测试, 2019, 38(2): 186-194. doi: 10.15898/j.cnki.11-2131/td.201808030091

[6]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[7]

李松, 饶竹, 宋淑玲, 田芹, 赵威. 气相色谱-质谱在地下水检测过程中的重要性. 岩矿测试, 2010, 29(5): 518-522.

[8]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[9]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[10]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

[11]

冯丽, 李诚, 张彦, 张喜友. 吹扫捕集/气相色谱-质谱法测定地下水中30种挥发性有机物. 岩矿测试, 2012, 31(6): 1037-1042.

[12]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[13]

刘美美, 张小辉, 马娅妮, 李雪莹, 陶秋丽. 吹扫捕集-气相色谱-质谱联用法测定地下水中27种挥发性有机物. 岩矿测试, 2012, 31(3): 495-500.

[14]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[15]

宋淑玲, 饶竹. 气相色谱电子捕获法检测地下水中5种残留农药. 岩矿测试, 2011, 30(2): 174-177.

[16]

马晗宇, 刘菲, 刘玉龙. 气相色谱法测定地下水中有机氯农药和多氯联苯. 岩矿测试, 2010, 29(5): 527-530.

[17]

王敏捷, 周姣花, 曹立峰. 气相色谱法测定地下水中15种有机氯农药. 岩矿测试, 2010, 29(5): 628-630.

[18]

徐洁, 鲜啟鸣. 气相色谱-质谱法分析某阻燃剂生产厂周边淡水鱼中的多溴联苯醚及其累积特征. 岩矿测试, 2017, 36(4): 405-412. doi: 10.15898/j.cnki.11-2131/td.201702200017

[19]

曹攽, 马军, 李云木子. 荧光-紫外检测器高效液相色谱法检测地下水中16种多环芳烃. 岩矿测试, 2010, 29(5): 539-542.

[20]

高松, 张兰英, 王琳, 宋杰, 崔哲, 吕春欣, 刘鹏, 邓银舟. Needle trap-顶空进样-气相色谱法分析地下水中的苯系物. 岩矿测试, 2010, 29(5): 508-512.

计量
  • PDF下载量(7)
  • 文章访问量(448)
  • HTML全文浏览量(177)
  • 被引次数(0)
目录

Figures And Tables

地下水中91种农药多残留气相色谱-质谱分析方法研究及应用

高冉, 饶竹, 郭晓辰