【引用本文】 赵秀峰, 高孝礼, 曹磊, 等. 土壤界限含水率标准物质研制[J]. 岩矿测试, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119
ZHAO Xiu-feng, GAO Xiao-li, CAO Lei, et al. Preparation of Certified Reference Materials for Soil Limit Water Content[J]. Rock and Mineral Analysis, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119

土壤界限含水率标准物质研制

江苏省地质调查研究院, 江苏 南京 210018

收稿日期: 2020-08-28  修回日期: 2021-05-06  接受日期: 2021-07-02

基金项目: 中国地质调查局地质调查项目"土壤界限含水率等标准物质研制及DT-92《土工试验规程》修订"(DD20160095-15);国家重点研发计划项目"典型矿产标准物质研制"课题(2016YFF0201103)

作者简介: 赵秀峰, 硕士, 高级工程师, 从事岩土和非金属矿物化性能测试及研究工作。E-mail: zhaoxiufeng-zxf@163.com

Preparation of Certified Reference Materials for Soil Limit Water Content

Geological Survey of Jiangsu Province, Nanjing 210018, China

Received Date: 2020-08-28
Revised Date: 2021-05-06
Accepted Date: 2021-07-02

摘要:界限含水率是细粒土定名分类、评价土的工程性质的重要依据,也是黏土矿勘查和工业利用的重要评价指标。不准确的界限含水率测试结果将可能导致严重的工程安全事故,造成人身和经济财产损失。标准物质是保障分析数据准确、可比和有效的重要手段,但当前国内外尚无土壤界限含水率标准物质,可见研制土壤界限含水率标准物质具有重要的现实意义。基于以上原因,本文严格按照《一级标准物质技术规范》(JJF 1006-1994)和《标准物质定值的通用原则及统计学原理》(JJF 1343-2012)等规范和标准,研制了5个土壤界限含水率标准物质(GBW07969、GBW07970、GBW07971、GBW07972、GBW07973)。候选物样品分别采自安徽淮北、山西大同及江苏南京等地,经人工粗碎、烘干、灭菌等加工处理后,采用大型球磨机将候选物样品细碎至粒径小于0.25mm。混匀、分装后每个候选物随机抽取25瓶进行均匀性检验,F实测值均小于临界值F0.05(24,25)=1.96,相对标准偏差(RSD)介于1.16%~2.67%之间,表明均匀性良好。12个月的考察期内进行的5次长期稳定性检验和考虑两种极端环境温度(60℃、-20℃)的短期稳定性检验,均未发现统计学意义的明显变化,候选物样品稳定性良好。经9家实验室采用2种经典土壤界限含水率测试方法联合定值,10mm液限、塑限和塑性指数3个定值指标的标准值分别介于26.3%~39.9%、16.3%~22.2%、10.0%~17.7%之间,梯度系列显著,涵盖了粉质黏土和黏土两种黏性土类别。该系列标准物质可用于仪器设备校准、质量监控、能力验证等技术质量活动,为水工环地质勘查、岩土工程勘察、黏土矿勘查等工作对土壤界限含水率测试数据准确性的要求提供了保障。

关键词: 土壤, 界限含水率, 标准物质, 标准值, 不确定度

要点

(1) 首次研制了5个量值梯度明显,覆盖黏性土类别的土壤界限含水率国家一级标准物质。

(2) 联合9家通过考核的实验室同时采用2种经典测试方法定值,结果准确、可靠。

(3) 该系列标准物质可为土壤界限含水率测试数据的准确、可比和有效性提供保障。

Preparation of Certified Reference Materials for Soil Limit Water Content

ABSTRACT

BACKGROUND:

Soil limit water content is an important basis for fine-grained soil classification and engineering property evaluation. Additionally, it is an important evaluation index for clay exploration and industrial utilization. Inaccurate test results of soil limit water content may lead to serious engineering safety accidents and personal and economic property losses. Certified reference materials (CRMs) are important for ensuring the accuracy, comparability, and effectiveness of the analyzed data. However, no certified reference materials for soil limit water content exist; therefore, the preparation of CRMs for the soil limit water content holds great significance.

OBJECTIVES:

To prepare CRMs of soil limit water content.

METHODS:

In strict accordance with the specifications and standards, such as "Technical Specifications for First-Class Reference Materials" (JJF 1006-1994) and "General Principles and Statistical Principles for the Valuation of Reference Materials" (JJF 1343-2012), five standard materials of soil limit water content (GBW07969, GBW07970, GBW07971, GBW07972, and GBW07973) have been developed. These samples were collected from Huaibei of Anhui province, Datong of Shanxi province, and Nanjing of Jiangsu province. After artificial crushing, drying, and sterilization, the samples were finely crushed to less than 0.25mm by a large ball mill. After particle size analysis, the samples were bottled and numbered in a clean room.

RESULTS:

Twenty-five bottles of each sample were randomly selected for homogeneity testing. All the measured values of F were less than F0.05 (24, 25)=1.96, and the relative standard deviation (RSD) was between 1.16% and 2.67%, which indicated good uniformity. There were no significant differences in the long-term stability test (12months) and the short-term stability test (60℃, -20℃). The certified values of 10mm liquid limit, plastic limit, and plasticity index were 26.3%-39.9%, 16.9%-22.2%, and 10.0%-17.7%, respectively. The gradient series was significant, which included silty clayey and clayey type of soils.

CONCLUSIONS:

Five first classes of National CRMs (GBW07969, GBW07970, GBW07971, GBW07972, and GBW07973) of soil limit water content were successfully prepared. This series of CRMs can be used for calibration of instruments and equipment, quality control, capability verification, and other technical quality activities, which provide a guarantee for the accuracy requirements of soil limit water test data in hydraulic environment geological exploration, geotechnical engineering exploration, clay mine exploration, and other related disciplines.

KEY WORDS: soil, limit water content, reference material, certified value, uncertainty

HIGHLIGHTS

(1) For the first time, five first classes of national certified reference materials of soil limit water content with clear gradient values and clayey soil type were prepared.

(2) Nine laboratories that passed the assessment used two classical test methods to determine the values, which ensured the accuracy and reliability of the test results.

(3) A series of certified reference materials can guarantee the accuracy, comparability, and effectiveness of the test data of soil limit water content.

本文参考文献

[1]

赵欢,毕升. 土力学与地基基础[M] . 北京: 北京理工大学出版社, 2018

Zhao H,Bi S. Soil mechanics and foundation[M] . Beijing: Beijing Institute of Technology Press, 2018
[2]

邓志飞, 刘吉夫, 郭兰兰, 等. 粘土矿物组成对土体液化特性的影响研究进展[J]. 灾害学, 2020, 35(3): 213-219. doi: 10.3969/j.issn.1000-811X.2020.03.039

Deng Z F, Liu J F, Guo L L, et al. Research process on the influence of clay mineral composition on soil liquefaction characteristics[J].Journal of Catastrophology, 2020, 35(3): 213-219. doi: 10.3969/j.issn.1000-811X.2020.03.039

[3]

袁士才, 田宗坤, 张开发, 等. 掺和料对改良土液塑限影响试验研究[J]. 低温建筑技术, 2017, 39(1): 84-85.

Yuan S C, Tian Z K, Zhang K F, et al. Research on effect of admixture on liquid limit and plastic limit of improved soil[J]. Low Temperature Architecture Technology, 2017, 39(1): 84-85.

[4]

毕庆涛, 曹世超, 吴琦, 等. 渤海近海口软黏土液塑限试验研究[J]. 人民黄河, 2019, 41(5): 148-151. doi: 10.3969/j.issn.1000-1379.2019.05.032

Bi Q T, Cao S C, Wu Q, et al. Experimental study on liquid-plastic limit of soft clay in Bohai seaport[J].Yellow River, 2019, 41(5): 148-151. doi: 10.3969/j.issn.1000-1379.2019.05.032

[5]

朱慧鑫, 邓羽松, 夏振刚, 等. 鄂东南花岗岩崩岗剖面土壤液塑限特征及影响因子分析[J]. 中国水土保持科学, 2016, 14(5): 1-7.

Zhu H X, Deng Y S, Xia Z G, et al. Liquid and plastic limits and influencing factors for the profiles of collapse slope in southeast of Hubei Province[J]. Science of Water and Soil Conservation, 2016, 14(5): 1-7.

[6]

董均贵, 季春生. 粒径对液塑限的影响及影响机理研究[J]. 工程建设, 2017, 49(3): 13-17.

Dong J G, Ji C S. Discussion on influence of particle size on liquid and plastic limit and its influence mechanism[J]. Engineering Construction, 2017, 49(3): 13-17.

[7]

陈菊腾, 刘建文. 细粒土的塑性指数与黏粒含量的关系分析[J]. 工程建设与设计, 2020, (16): 57-58.

Chen J T, Liu J W. Relationship analysis between plasticity index and clay content of fine grained soil[J]. Construction & Design for Project, 2020, (16): 57-58.

[8]

蒋玉, 饶真勇, 罗德兵, 等. 不同限定粒径下土体液塑限指标分析[J]. 山西建筑, 2020, 46(6): 64-66. doi: 10.3969/j.issn.1009-6825.2020.06.027

Jiang Y, Rao Z Y, Luo D B, et al. Analysis of soil body fluid plastic limit index under different limited particle size[J].Shanxi Achitecture, 2020, 46(6): 64-66. doi: 10.3969/j.issn.1009-6825.2020.06.027

[9]

Adunoye G O, Badmus A B, Sagbele S A, et al. Experimental investigation of the influence of gradation parameters on Atterberg limits of soil[J].Archives of Current Research International, 2018, 15(4): 1-6. doi: 10.9734/ACRI/2018/45840

[10]

董金玉, 赵亚文. 不同含水率下高低液塑限红黏土抗剪强度特性研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3): 84-87. doi: 10.3969/j.issn.1002-5634.2018.03.015

Dong J Y, Zhao Y W. Study on shear strength of high and low liquid plastic limit red clay with different water contents[J].Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 84-87. doi: 10.3969/j.issn.1002-5634.2018.03.015

[11]

罗爽, 高华端, 陶倩, 等. 黔中地区坡耕地土壤机械组成对界限含水量的影响[J]. 土壤通报, 2020, 51(3): 580-586.

Luo S, Gao H D, Tao Q, et al. Influence of soil mechanical composition on the atterberg limits in the slope farmland of central Guizhou[J]. Chinese Journal of Soil Science, 2020, 51(3): 580-586.

[12]

于泽溪, 李育超, 陈冠年, 等. 钠质膨润土渗透性与膨胀性及可塑性的相关性[J]. 哈尔滨工业大学学报, 2020, 52(11): 97-106. doi: 10.11918/201907039

Yu Z X, Li Y C, Chen G N, et al. Correlation between permeability, swelling, and plasticity of sodium bentonite[J].Journal of Harbin Institute of Technology, 2020, 52(11): 97-106. doi: 10.11918/201907039

[13]

李善梅, 刘之葵, 蒙剑坪, 等. pH值对桂林红黏土界限含水率的影响及其机理分析[J]. 岩土工程学报, 2017, 39(10): 1814-1822. doi: 10.11779/CJGE201710009

Li S M, Liu Z K, Meng J P, et al. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J].Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. doi: 10.11779/CJGE201710009

[14]

周凤玺, 张海威, 张家齐, 等. 基于粒间毛细作用探讨界限含水量[J]. 兰州理工大学学报, 2018, 44(3): 115-118. doi: 10.3969/j.issn.1673-5196.2018.03.022

Zhou F X, Zhang H W, Zhang J Q, et al. Probe into liquid and plastic limits of fine-grained soils with intergranular capillary[J].Journal of Lanzhou University of Technology, 2018, 44(3): 115-118. doi: 10.3969/j.issn.1673-5196.2018.03.022

[15]

刘朋飞, 王树英, 阳军生, 等. 渣土改良剂对黏土液塑限影响及机理分析[J]. 哈尔滨工业大学学报, 2018, 50(6): 91-96.

Liu P F, Wang S Y, Yang J S, et al. Effect of soil conditioner on Atterberg limits of clays and its mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 91-96.

[16]

Zhou B C, Lu N. Correlation between Atterberg limits and soil adsorptive water[J].Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020162. doi: 10.1061/(ASCE)GT.1943-5606.0002463

[17]

Widjaja B, Nirwanto A F. Effect of various temperatures to liquid limit, plastic limit, and plasticity index of clays[J].IOP Conference Series: Materials Science and Engineering, 2019, 508(1): 012099. doi: 10.1088/1757-899X/508/1/012099/pdf

[18]

Arthur E, Rehman H U, Tuller M, et al. Estimating Atterberg limits of soils from hygroscopic water content[J].Geoderma, 2021, 381: 114698. doi: 10.1016/j.geoderma.2020.114698

[19]

Zhao M Z, Luo Q, Wei M, et al. Evaluation for intrinsic compressibility of reconstituted clay using liquid limit, initial water content and plasticity index[J].European Journal of Environmental and Civil Engineering, 2019, 23(11): 1332-1350. doi: 10.1080/19648189.2017.1347069

[20]

Vardanega P J, Hickey C L, Lau K, et al. Investigation of the Atterberg limits and undrained fall-cone shear strength variation with water content of some peat soils[J].International Journal of Pavement Research and Technology, 2019, 12(2): 131-138. doi: 10.1007/s42947-019-0017-0

[21]

Spagnoli G, Feinendegen M. Relationship between measured plastic limit and plastic limit estimated from undrained shear strength, water content ratio and liquidity index[J].Clay Minerals, 2017, 52(4): 509-519. doi: 10.1180/claymin.2017.052.4.08

[22]

《工程地质手册》编委会. 工程地质手册(第5版)[M] . 北京: 中国建筑工业出版社, 2018

Editing committee of 《Handbook of Engineering Geology》 . Handbook of engineering geology (The fifth edition)[M] . Beijing: China Architecture Press, 2018
[23]

史福刚, 张佳宝, 姚健, 等. 砂姜黑土界限含水率及适耕性研究[J]. 河南农业科学, 2017, 46(12): 59-64.

Shi F G, Zhang J B, Yao J, et al. Atterberg limits and tillability of different types of lime concretion black soil[J]. Journal of Henan Agricultural Sciences, 2017, 46(12): 59-64.

[24]

《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M] . 北京: 地质出版社, 2014

Editorial committee of 《Handbook on Industrial Requirements for Mineral Resources》 . Handbook on industrial requirements for mineral resources[M] . Beijing: Geological Publishing House, 2014
[25]

苗立锋, 包镇红, 宋福生, 等. 几种高岭土的组成与可塑性研究[J]. 硅酸盐通报, 2014, 33(2): 333-336.

Miao L F, Bao Z H, Song F S, et al. Study on the composition and plasticity of several kaolin[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(2): 333-336.

[26]

张艾丽, 冯荣, 成龙胜, 等. 振捣法提高硬质高岭土可塑性的研究[J]. 硅酸盐通报, 2019, 38(3): 884-888.

Zhang A L, Feng R, Cheng L S, et al. Study on improving plasticity of hard kaolin by vibrating tamping[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 884-888.

[27]

Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 599-601.

[28]

Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 333-350.

[29]

王毅民, 王晓红, 高玉淑, 等. 地质标准物质粒度测量与表征的现代方法[J]. 地质通报, 2009, 28(1): 137-145.

Wang Y M, Wang X H, Gao Y S, et al. Modern methods for the measurement and characterization of particle size in geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(1): 137-145.

[30]

王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804-807.

Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(6): 804-807.

[31]

李庆庆, 刘冰, 周伟兵, 等. 中美英规范界限含水率试验差异及数据对比[J]. 水运工程, 2020, (5): 224-228.

Li Q Q, Liu B, Zhou W B, et al. Difference and data comparative of limit moisture content test in Chinese, American and British codes[J]. Port & Waterway Engineering, 2020, (5): 224-228.

[32]

Sharma B, Sridharan A. Liquid and plastic limits of clays by cone method[J].International Journal of Geo-Engineering, 2018, 9(1): 22. doi: 10.1186/s40703-018-0092-0

[33]

张宗堂, 高文华, 黄建平, 等. 基于液塑限联合测定法的界限含水量确定方法研究[J]. 湖南科技大学学报(自然科学版), 2016, 31(3): 58-63.

Zhang Z T, Gao W H, Huang J P, et al. Study on determination method of critical moisture content based on liquid-plastic limit combined measurement[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2016, 31(3): 58-63.

[34]

彭慈德, 常留成. 数学解析法在界限含水率试验中的判别式研究[J]. 路基工程, 2018, (1): 16-19, 24.

Peng C D, Chang L C. Discriminant study of mathematical analytic method in boundary moisture content test[J]. Subgrade Engineering, 2018, (1): 16-19, 24.

[35]

陈孟元. 土壤界限含水率自动检测系统设计研究[J]. 工程设计学报, 2017, 24(4): 473-479.

Chen M Y. Research on design of automatic detection system for soil limit moisture content[J]. Chinese Journal of Engineering Design, 2017, 24(4): 473-479.

[36]

王清海, 杨贵林, 李友, 等. 细粒土界限含水率液、塑限联合测定自动化方案的分析与探讨[J]. 隧道建设, 2020, 40(5): 644-651.

Wang Q H, Yang G L, Li Y, et al. Analysis and discussion on automatic scheme of combined determination of liquid and plastic limits for limit moisture content of fine-grained soil[J]. Tunnel Construction, 2020, 40(5): 644-651.

[37]

王苏明,翟培军,牛兴荣. 实验室能力验证实践[M] . 北京: 中国标准出版社, 2006

Wang S M,Zhai P J,Niu X R. Laboratory proficiency testing practice[M] . Beijing: Standards Press of China, 2006
[38]

赵秀峰, 高孝礼, 曹景洋, 等. 土的两种塑限测试方法精密度比较[J]. 工程勘察, 2021, 49(6): 19-24.

Zhao X F, Gao X L, Cao J Y, et al. Comparison of the precision of two plastic limit testing methods of soil[J]. Geotechnical Investigation & Surveying, 2021, 49(6): 19-24.

相似文献(共20条)

[1]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[4]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[5]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[6]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[7]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[8]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[9]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[10]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[11]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[12]

赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

[13]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[14]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[15]

程志中, 顾铁新, 范永贵, 黄宏库, 刘 妹, 鄢卫东, 鄢明才. 九个铁矿石标准物质研制. 岩矿测试, 2010, 29(3): 305-308.

[16]

程志中, 刘妹, 黄宏库, 顾铁新, 鄢卫东. 镍矿石和镍精矿标准物质研制. 岩矿测试, 2013, 32(4): 600-607.

[17]

鄢明才. 地球化学标准物质标准不确定度估算探讨. 岩矿测试, 2001, (4): 287-293.

[18]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[19]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[20]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

计量
  • PDF下载量(5)
  • 文章访问量(995)
  • HTML全文浏览量(33)
  • 被引次数(0)
目录

Figures And Tables

土壤界限含水率标准物质研制

赵秀峰, 高孝礼, 曹磊, 曹景洋, 路新成