【引用本文】 王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
WANG Jia-han , LI Zheng-he , YANG Feng , et al. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085

偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素

中国人民武装警察部队黄金第九支队, 海南 海口 571127

收稿日期: 2020-06-05  修回日期: 2020-09-12 

基金项目: 中国地质调查局地质调查项目(DD20191027)

作者简介: 王佳翰,硕士,工程师,从事地质样品分析研究工作。E-mail:wangjiahanhao@163.com。

Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion

No. 9 Geological Part of Chinese Armed Police Force, Haikou 571127, China

Received Date: 2020-06-05
Revised Date: 2020-09-12

摘要:海洋沉积物常用的分析方法如敞开消解或高压密闭消解结合电感耦合等离子体质谱(ICP-MS)或电感耦合等离子体发射光谱(ICP-OES)测定,粉末压片或熔片结合X射线荧光光谱法(XRF)测定,分别存在消解不完全、速度慢、检出限高等缺点,导致样品前处理效率低、待测元素少。针对上述缺点,本文采用偏硼酸锂为熔剂分解样品,5%硝酸浸取,用ICP-MS法进行测定,建立了一种快速测定海洋沉积物中48种元素的分析方法。使用海洋沉积物国家标准物质作为高点绘制标准工作曲线,确定了助熔剂偏硼酸锂用量、稀释倍数、各待测元素的分析同位素及内标元素、仪器测定模式及个别元素的干扰校正方程等,得到最佳分解条件及测定条件。研究表明,由于高温损失,P、As、Se、Cd、Hg等元素无法得到准确结果,可改用微波消解等方式前处理后再进行测定;Cu、Zn、Cr、Ni、Co等共计48种元素使用本法均能得到准确结果,各元素方法精密度(RSD)均小于9.7%。本方法应用于测定海洋沉积物国家标准物质GBW07333、GBW07314、GBW07335、GBW07336,测定值和认定值相符;测定海洋沉积物实际样品,各元素加标回收率介于83%~118%。本方法极大提高了分析效率,且可测定元素多,适合大批量分析样品。

关键词: 海洋沉积物, 碱熔, 偏硼酸锂, 电感耦合等离子体质谱法

Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion

KEY WORDS: marine sediment, alkali fusion, lithium metaborate, inductively coupled plasma-mass spectrometry

本文参考文献

[1]

Guan Y,Sun X M,Shi G Y,et al.Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea[J].Acta Geologica Sinica (English Edition),2017,91(5):1751-1766.

[2]

Wegorzewski A V,Grangeon S,Webb S M,et al.Mineralogical transformations in polymetallic nodules and the change of Ni,Cu and Co crystal-chemistry upon burial in sediments[J].Geochimica et Cosmochimica Acta,2020,282:19-37.

[3]

Wang X H,Gao Y S,Wang Y M,et al.Three cobalt-rich seamount crust reference materials:GSMC-1 to 3[J].Geostandards & Geoanalytical Research,2003,27(3):251-257.

[4]

Levin L A,Mengerink K,Gjerde K M,et al.Defining "serious harm" to the marine environment in the context of deep-seabed mining[J].Marine Policy,2016,74:245-259.

[5]

German C R,Petersen S,Hannington M D.Hydrothermal exploration of mid-ocean ridges:Where might the largest sulfide deposits be forming?[J].Chemical Geology,2016,420:114-126.

[6]

Monecke T,Petersen S,Hannington M,et al.The global rare element endowment of seafloor massive sulfide deposits[J].13th SGA Biennial Meeting,2015,3:1261-1263.

[7]

Takaya Y,Yasukawa K,Kawasaki T,et al.The tremendous potential of deep-sea mud as a source of rare-earth elements[J].Scientific Reports,2018,8:5763.

[8]

Li J R,Lius F,Feng X L,et al.Major and trace element geochemistry of the mid-bay of Bengal surface sediments:Implications for provenance[J].Acta Oceanologica Sinica,2017,36(3):82-90.

[9]

Pham D T,Gouramanis C,Switzer A D,et al.Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island,Thailand:Insights into the provenance of coastal hazard deposits[J].Marine Geology,2017,385:274-292.

[10]

冯利,冯秀丽,王晓明,等.末次盛冰期以来南海西北陆坡沉积物来源及其常微量元素对古气候变化的响应[J].中国海洋大学学报,2020,50(6):88-100.

Feng L,Feng X L,Wang X M,et al.Sediment provenance and climate change since the last glacial maximum record by major and trace elements in the northwestern slope of the South China Sea[J].Periodical of Ocean University of China,2020,50(6):88-100.

[11]

Santos I R,Favaro D I,Schaefer C E,et al.Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay,King George Island):Evidence from rare earths and other elements[J].Marine Chemistry,2007,107(4):464-474.

[12]

Xu F J,Hu B Q,Dou T G,et al.Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J].Continental Shelf Research,2017,144:21-30.

[13]

贾福福,沙龙滨,李冬玲,等.西伯利亚极地海域第四纪以来古海洋环境研究进展[J].极地研究,2020,32(2):250-263.

Jia F F,Sha L B,Li D L,et al.Review of research on quaternary paleoceanography of the Siberian arctic seas[J].Chinese Journal of Polar Research,2020,32(2):250-263.

[14]

Yasukawa K,Nakamura K,Fujinaga K,et al.Rare-earth,major,and trace element geochemistry of deep-sea sediments in the Indian Ocean:Implications for the potential distribution of REY-rich mud in the Indian Ocean[J].Geochemical Journal,2015,49(6):621-635.

[15]

Iijima K,Yasukawa K,Fujinaga K,et al.Discovery of extremely REY-rich mud in the western North Pacific Ocean[J].Geochemical Journal,2016,50(6):557-573.

[16]

曾志刚,陈祖兴,张玉祥,等.海底热液活动的环境与产物[J].海洋科学,2020,44(7):143-155.

Zeng Z G,Chen Z X,Zhang Y X,et al.Seafloor hydrothermal activities and their geological environments and products[J].Marine Sciences,2020,44(7):143-155.

[17]

Begum Z,Balaram V,Ahmad S M,et al.Determination of trace and rare earth elements in marine sediment reference materials by ICP-MS:Comparison of open and closed acid digestion methods[J].Atomic Spectroscopy,2007,28(2):41-50.

[18]

高晶晶,刘季花,张辉,等.高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J].岩矿测试,2012,31(3):425-429.

Gao J J,Liu J H,Zhang H,et al.Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J].Rock and Mineral Analysis,2012,31(3):425-429.

[19]

王初丹,罗盛旭.硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J].桂林理工大学学报,2016,36(2):337-340.

Wang C D,Luo S X.Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J].Journal of Guilin University of Technology,2016,36(2):337-340.

[20]

孙友宝,宋晓红,孙媛媛,等.电感耦合等离子体原子发射光谱法(ICP-AES)测定海洋沉积物中的多种金属元素[J].中国无机分析化学,2014,4(3):35-38.

Sun Y B,Song X H,Sun Y Y,et al.Determination of multiple metallic elements in oceanic sediments by ICP-AES[J].Chinese Journal of Inorganic Analytical Chemistry,2014,4(3):35-38.

[21]

Ahmed A Y,Abdullah P,Wood A K,et al.Determination of some trace elements in marine sediment using ICP-MS and XRF (A comparative study)[J].Oriental Journal of Chemistry,2013,29(2):645-653.

[22]

张颖,朱爱美,张迎秋,等.波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J].分析化学,2019,47(7):19. Zhang Y,Zhu A M,Zhang Y Q,et al.Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J].Chinese Journal of Analytical Chemistry,2019

,47(7):19.

[23]

孙萱,宋金明,于颖,等.熔融制样XRF法测定海洋沉积物中10种主量元素的条件优化[J].海洋环境科学,2020,39(6):902-908.

Sun X,Song J M,Yu Y,et al.Optimum conditions for the determination of 10 main elements in marine sediments by the fused bead-X-ray fluorescence spectrometry[J].Marine Environmental Science,2020,39(6):902-908.

[24]

王娜,徐铁民,魏双,等.微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J].岩矿测试,2020,39(1):68-76.

Wang N,Xu T M,Wei S,et al.Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J].Rock and Mineral Analysis,2020,39(1):68-76.

[25]

王蕾,何红蓼,李冰.碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J].岩矿测试,2003,22(2):86-92.

Wang L,He H L,Li B.Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J].Rock and Mineral Analysis,2003,22(2):86-92.

[26]

罗磊,付胜波,肖洁,等.电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅[J].岩矿测试,2014,33(2):203-207.

Luo L,Fu S B,Xiao J,et al.Determination of lead in argentalium ores containing barite by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis,2014,33(2):203-207.

[27]

杨辉,王书言,黄继勇,等.同时检测土壤中铅镉铬汞砷重金属元素含量方法的优化[J].河南科技大学学报(自然科学版),2020,41(1):74-79. Yang H,Wang S Y,Huang J Y,et al.Optimization of simultaneous detection method for heavy metal elements content of Pb,Cd,Cr,Hg and As in soil[J].Journal of Henan University of Science and Technology (Natural Science),2020,41(1):74-79.

[28]

杨常青,张双双,吴楠,等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试,2016,35(5):481-487.

Yang C Q,Zhang S S,Wu N,et al.Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J].Rock and Mineral Analysis,2016,35(5):481-487.

[29]

苗雪雪,苗莹,龚浩如,等.不同消解方法测定植株中磷含量的比较研究[J].中国农学通报,2019,35(20):132-137.

Miao X X,Miao Y,Gong H R,et al.Digestion methods for determining phosphorus content in plants[J].Chinese Agricultural Science Bulletin,2019,35(20):132-137.

[30]

汪勇先,秦俊法,吉倩梅,等.不同的干燥和灰化过程中生物样品微量元素损失的放射性示踪研究——Ⅰ.锌、钼、镉和硒[J].分析化学,1985,13(3):54-57.

Wang Y X,Qin J F,Ji Q M,et al.Investigation on the loss of trace elements in biological materials in different drying and ashing procedures by using radioactive tracers.Ⅰ:Zn,Mo,Cd and Se[J].Chinese Journal of Analytical Chemistry,1985,13(3):54-57.

[31]

冯婧.重金属元素分析消解技术在镉、砷检测中的应用比较[J].食品研究与开发,2017,38(16):143-148.

Feng J.Comparison and application of digestion methods of heavy metals on cadmium and arsenic determination[J].Food Research and Development,2017,38(16):143-148.

[32]

任玲玲,谭胜楠,李建朝.微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J].冶金分析,2020,40(6):75-80.

Ren L L,Tan S N,Li J C.Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis,2020,40(6):75-80.

[33]

刘珂珂,霍现宽,褚艳红,等.超声辅助-王水提取法在测定土壤中重金属元素的应用[J].冶金分析,2019,39(1):48-53.

Liu K K,Huo X K,Chu Y H,et al.Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J].Metallurgical Analysis,2019,39(1):48-53.

[34]

禹莲玲,郭斌,柳昭,等.电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J].岩矿测试,2020,39(1):77-84.

Yu L L,Guo B,Liu Z,et al.Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis,2020,39(1):77-84.

[35]

董学林,贾正勋,汪慧平,等.共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J].冶金分析,2016,36(3):6-10.

Dong X L,Jia Z X,Wang H P,et al.Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J].Metallurgical Analysis,2016,36(3):6-10.

[36]

范爽,郭超,张百慧,等.基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J].冶金分析,2020,40(8):8-21.

Fan S,Guo C,Zhang B H,et al.Evaluation of analytical method performance for determination of heavy metals in soils by energy dispersive X-ray fluorescence spectrometry based on inter-laboratory collaborative experiments[J].Metallurgical Analysis,2020,40(8):8-21.

[37]

张瑞仙,崔智勇,王建绣,等.高压罐消解和湿法消解测定食品中铅的比较[J].中国卫生检验杂志,2016,26(17):2468-2470.

Zhang R X,Cui Z Y,Wang J X,et al.Comparison between high pressure tank digestion and wet digestion in the determination of lead in food[J].Chinese Journal of Health Laboratory Technology,2016,26(17):2468-2470.

[38]

徐浩然,张瑞娜,胡济民,等.硫和硫化物对垃圾焚烧过程中Pb迁移分布的影响[J].环境工程学报,2019,13(1):175-182.

Xu H R,Zhang R N,Hu J M,et al.Influence of sulfur and sulfide on migration and distribution of lead in waste incineration process[J].Chinese Journal of Environmental Engineering,2019,13(1):175-182.

[39]

邱海鸥,郑洪涛,汤志勇.岩石矿物分析[J].分析试验室,2014,33(11):1349-1364.

Qiu H O,Zheng H T,Tang Z Y.Analysis of rocks and minerals[J].Chinese Journal of Analysis Laboratory,2014,33(11):1349-1364.

[40]

门倩妮,沈平,甘黎明,等.敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J].岩矿测试,2020,39(1):59-67.

Men Q N,Shen P,Gan L M,et al.Determination of rare earth elements and Nb,Ta,Zr,Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J].Rock and Mineral Analysis,2020,39(1):59-67.

[41]

李占江.金银及有色金属地勘矿冶分析手册[M].北京:地质出版社,2013:490-495. Li Z J.Handbook for geological prospecting and metallurgy of gold,silver and nonferrous metals[M].Beijing:Geological Publishing House,2013:490

-495.

相似文献(共20条)

[1]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[2]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[6]

赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358.

[7]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

[8]

高晶晶, 刘季花, 张辉, 白亚之, 崔菁菁, 何连花. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素. 岩矿测试, 2012, 31(3): 425-429.

[9]

崔德松. 碳酸钠-四硼酸钠碱熔-电感耦合等离子体发射光谱法测定铬铁矿石中11种元素. 岩矿测试, 2012, 31(1): 138-141.

[10]

付爱瑞, 陈庆芝, 罗治定, 姜云军, 金倩, 王芸. 碱熔-电感耦合等离子体发射光谱法测定大气颗粒物样品中无机元素. 岩矿测试, 2011, 30(6): 751-755.

[11]

阳国运, 唐裴颖, 张洁, 战大川, 覃盛, 何雨珊. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

[12]

高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立. 岩矿测试, 2014, 33(3): 312-320.

[13]

马生凤, 温宏利, 赵怀颖, 孙红宾, 巩爱华. 氨水提取-电感耦合等离子体发射光谱法测定海洋沉积物中的氯. 岩矿测试, 2013, 32(1): 40-43.

[14]

熊文明, 张志军. 碱熔-离子色谱法同时测定玻璃中的氟和硫. 岩矿测试, 2011, 30(6): 768-771.

[15]

陈道华, 张欣. 等离子体发射光谱法直接测定海洋沉积物中的微量稀土元素. 岩矿测试, 2003, (1): 61-63.

[16]

常文博, 李凤, 张媛媛, 贺行良. 元素分析-同位素比值质谱法测量海洋沉积物中有机碳和氮稳定同位素组成的实验室间比对研究. 岩矿测试, 2020, 39(4): 535-545. doi: 10.15898/j.cnki.11-2131/td.202003090027

[17]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[18]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[19]

李松, 王亚平, 饶竹, 祁鹏. 海洋沉积物中吸附态轻烃的气相色谱分析. 岩矿测试, 2004, (4): 256-259.

[20]

雷占昌, 韩斯琴图, 蒋常菊, 梁慧贞. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡. 岩矿测试, 2019, 38(3): 326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127

计量
  • PDF下载量(7)
  • 文章访问量(547)
  • 被引次数(0)
目录

Figures And Tables

偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素

王佳翰, 李正鹤, 杨峰, 杨秀玖, 黄金松