【引用本文】 周帆, 李明, 柴辛娜, 等. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成[J]. 岩矿测试, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075
ZHOU fan , LI Ming , CHAI Xin-na , et al. Insitu Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075

非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成

1. 中国地质大学(武汉)地质过程与矿产资源国家重点实验室, 湖北 武汉 430074;

2. 中国地质大学(武汉)研究生院, 湖北 武汉 430074;

3. 中国地质大学(武汉)地球科学学院, 湖北 武汉 430074

收稿日期: 2020-05-24  修回日期: 2020-07-06 

基金项目: 国家自然科学基金青年基金项目(41103014,41203007);地质过程与矿产资源国家重点实验室基金项目(MSFGPMR02)

作者简介: 周帆,硕士研究生,分析化学专业。E-mail:1294757849@qq.com。。

Insitu Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Wuhan), Wuhan 430074, China;

2. Graduate School, China University of Geosciences(Wuhan), Wuhan 430074, China;

3. School of Earth Sciences, China University of Geosciences(Wuhan), Wuhan 430074, China

Received Date: 2020-05-24
Revised Date: 2020-07-06

摘要:激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)通常采用体积固定的封闭剥蚀池,大尺寸样品要经过切割或破碎,能够放入剥蚀池后才可以再进行LA-ICP-MS分析,因此,这种常规密闭式LA-ICP-MS难以用于无法破碎的珍稀大尺寸样品分析。为实现大尺寸样品的非破坏性微区原位主微量元素分析,本文基于自行设计的开放式样品采集口,结合气体交换装置,建立了开放式LA-ICP-MS分析方法,以大尺寸陶瓷圆盘样品为例,实现了其未经破碎即可直接在敞开的空气环境中进行微区原位主微量元素含量分析。最佳气流速下的氦气作为屏蔽气在开放式样品采集口周围形成屏障,将激光剥蚀点与空气隔开,同时激光剥蚀产生的分析物气溶胶被屏蔽气聚拢并携带,在样品采集口负压的作用下进入传输管路,通过气体交换装置,高纯氩气置换掉气溶胶中的混入的空气,最后进入等离子体质谱被检测。为验证该方法的准确性,将大尺寸陶瓷样品破碎后对开放式LA-ICP-MS分析点邻近区域进行常规密闭式LA-ICP-MS分析,两种方法所检测的51个元素中大部分相对差异小于10%,仅少量元素(如磷铍钪钇镧钐铕镝铪钨等)因含量极低相对差异高于20%,显示开放式LA-ICP-MS法具有很好的分析准确度,适用于对大尺寸样品的非破坏性微区原位主微量元素分析。

关键词: 开放式激光剥蚀, 大尺寸陶瓷样品, 非破坏性分析, 微区原位

Insitu Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

KEY WORDS: open laser ablation, large-size ceramic samples, non-destructive analysis, in situ

本文参考文献

[1]

Detlef G,Hattendorf B.Solid sample analysis using laser ablation inductively coupled mass spectrometry[J].Trends in Analytical Chemistry,2005,24(3):255-265.

[2]

Sylvester P J,Jackson S E.A brief history of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Elements,2016,12(5):307-310.

[3]

Liu Y S,Hu Z C,Li M,et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin,2013,58(32):3863-3878.

[4]

杨文武,史光宇,商琦,等.飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J].光谱学与光谱分析,2017,37(7):208-214.

Yang W W,Shi G Y,Shang Q,et al.Application of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in earth sciences[J].Apectroscopy and Spectral Analysis,2017,37(7):208-214.

[5]

吴石头,许春雪, Klaus S,等.193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J].岩矿测试,2017,36(5):451-459.

Wu S T,Xu C X,Klaus S,et al.Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J].Rock and Mineral Analysis,2017,36(5):451-459.

[6]

王辉,汪方跃,关炳庭,等.激光能量密度对LA-ICP-MS分析数据质量的影响研究[J].岩矿测试,2019,38(6):609-619.

Wang H,Wang F Y,Guan B T,et al.Effect of laser energy density on data quality during LA-ICP-MS measurement[J].Rock and Mineral Analysis,2019,38(6):609-619.

[7]

Zhang W,Hu Z C,Liu Y S,et al.In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry[J].Chemical Geology,2019,522:16-25.

[8]

宗克清,陈金勇,胡兆初,等.铀矿fs-LA-ICP-MS原位微区U-Pb定年[J].中国科学(地球科学),2015,45(9):1304-1315. Zong K Q,Chen J Y,Hu Z C,et al.In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J].Science China (Earth Sciences),2015,45(9):1304-1315.

[9]

Liao X H,Luo T,Zhang S H,et al.Direct and rapid multi-element analysis of wine samples in their natural liquid state by laser ablation ICPMS[J].Journal of Analytical Atomic Spectrometry,2020,35:1071-1079.

[10]

Pozebon D,Scheffler G L,Dressler V L,et al.Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples[J].Journal of Analytical Atomic Spectrometry,2014,29(12):2204-2228.

[11]

Limbeck A,Bonta M,Nischkauer W.Improvements in the direct analysis of advanced materials using ICP-based measurement techniques[J].Journal of Analytical Atomic Spectrometry,2017,32(2):212-232.

[12]

Orellana F A,Gálvez C G,Roldán M T,et al. Applications of laser-ablationinductively-coupled plasma-mass spectrometry in chemical analysis of forensic evidence[J].Trends in Analytical Chemistry,2013,42:1-34.

[13]

Mueller W,Fietzke J.The role of LA-ICP-MS in Palaeoclimate research[J].Elements,2016,12(5):329-334.

[14]

Degryse P,Vanhaecke F.Status and prospects for quasi-non-destructive analysis of ancient artefacts via LA-ICP-MS[J].Elements,2016,12(5):341-346.

[15]

Bi M,Ruiz A M,Gornushkin I,et al.Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Applied Surface Science,2000,158(3-4):197-204.

[16]

Feldmann I,Koehler C U,Roos P H,et al.Optimisation of a laser ablation cell for detection of hetero-elements in proteins blotted onto membranes by use of inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry,2006,21(10):1006-1015.

[17]

Liu Y S,Hu Z C,Yuan H L,et al.Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS:Application to fiber analyses[J].Journal of Analytical Atomic Spectrometry,2007,22(5):582-585.

[18]

Li M,Hu Z C,Gao S,et al.Direct quantitative determinations of trace elements in fine-grained whole rocks by laser ablation inductively coupled plasma mass spectrometry[J].Geostandards and Geoanalytical Research,2011,35:7-22.

[19]

Devos W,Moor C,Lienemann P.Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Journal of Analytical Atomic Spectrometry,1999,14(4):621-626.

[20]

Asogan D,Sharp B L,O'Connor C J P,et al.An open,non-contact cell for laser ablation-inductively coupled plasma-mass spectrometry[J].Journal of Analytical Atomic Spectrometry,2009,24(7):917-923.

[21]

Asogan D,Sharp B L,O'Connor C J P,et al.Numerical simulations of gas flows through an open,non-contact cell for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2011,26(3):631-634.

[22]

Wagner B,Wojciech J.Open ablation cell for LA-ICP-MS investigations of historic objects[J].Journal of Analytical Atomic Spectrometry,2011,26(10):2058-2063.

[23]

Glaus R,Koch J,Günther,D.Portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry[J].Analytical Chemistry,2012,84(12):5358-5364.

[24]

Kantor T,Kiraly E,Bertalan E,et al.Gas-flow optimization studies on brass samples using closed and open types of laser ablation cells in inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2012,68:46-57.

[25]

Nishiguchi K,Utani K,Fujimori E.Real-time multielement monitoring of airborne particulate matter using ICP-MS instrument equipped with gas converter apparatus[J].Journal of Analytical Atomic Spectrometry,2008,23(8):1125-1129.

[26]

Ohata M,Nishiguchi K.Direct analysis of gaseous mercury in ambient air by gas to particle conversion-gas exchange ICPMS[J].Journal of Analytical Atomic Spectrometry,2017,32(4):717-722.

[27]

Ohata M,Nishiguchi K.Research progress on gas to particle conversion-gas exchange ICP-MS for direct analysis of ultra-trace metallic compound gas[J].Analytical Sciences,2018,34(6):657-666.

[28]

Kovacs R,Nishiguchi K,Utani K,et al.Development of direct atmospheric sampling for laser ablation-inductively coupled plasma-mass spectrometry[J].Journal of Analytical Atomic Spectrometry,2010,25(2):142-147.

[29]

Tabersky D,Nishiguchi K,Utani K,et al.Aerosol entrain-ment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air[J].Journal of Analytical Atomic Spectrometry,2013,28(6):831-842.

[30]

Wu C C,Burger M,Günther D,et al.Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J].Analytica Chimica Acta,2018,1018:54-61.

[31]

Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257:34-43.

[32]

Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology,2010,51:537-571.

[33]

孟郁苗,黄小文,高剑峰,等.无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J].岩矿测试,2016,35(6):585-594.

Meng Y M,Huang X W,Gao J F,et al.Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J].Rock and Mineral Analysis,2016,35(6):585-594.

[34]

Eggins S M,Kinsley L P J,Shelley J M G.Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS[J].Applied Surface Science,1998,127-129:278-286.

[35]

Günther D,Heinrich C A.Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J].Journal of Analytical Atomic Spectrometry,1999,14(9):1363-1368.

[36]

Horn I,Günther D.The influence of ablation carrier gasses Ar,He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols:Implications for LA-ICP-MS[J].Applied Surface Science,2003,207(1-4):144-157.

[37]

Luo T,Hu Z C,Zhang W,et al.Reassessment of the influence of carrier gases he and ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry,2018,33(10):1655-1663.

相似文献(共20条)

[1]

范晨子, 胡明月, 赵令浩, 孙冬阳, 詹秀春. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 2012, 31(1): 29-46.

[2]

许涛, 罗立强. 原位微区X射线荧光光谱分析装置与技术研究进展. 岩矿测试, 2011, 30(3): 375-383.

[3]

谭靖, 郭冬发, 张彦辉, 张良圣, 夏晨光, 谢胜凯, 李伯平. 常见岩石矿物微区特征信息激光剥蚀光谱快速识别技术研究. 岩矿测试, 2012, 31(5): 807-813.

[4]

陈国能, 彭卓伦, 杨志军. 硬玉微区显微红外光谱分析. 岩矿测试, 2006, 25(3): 226-228.

[5]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[6]

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129

[7]

王毅民, 朱节清. 矿物微区元素分布分析研究:核探针的地学应用初探. 岩矿测试, 1991, (4): 262-266.

[8]

彭明生, 杨志军, . 金刚石的微区显微红外光谱分析及其意义. 岩矿测试, 2002, (3): 161-165.

[9]

梁细荣, 李献华. 激光探针等离子体质谱同时测定锆石微区铀—铅年龄及微量元素. 岩矿测试, 1999, (4): 253-258.

[10]

袁继海, 詹秀春, 樊兴涛, 胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展. 岩矿测试, 2011, 30(2): 121-130.

[11]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[12]

付宇, 孙晓明, 熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定. 岩矿测试, 2013, 32(6): 875-882.

[13]

范晨子, 胡明月, 赵令浩, 孙冬阳, 蒯丽君, 蔡炳贵, 詹秀春. 激光剥蚀电感耦合等离子体质谱分析石笋样品中多元素比值及45种元素含量. 岩矿测试, 2013, 32(3): 383-391.

[14]

李爱荣, 徐鸿志, 胡圣虹, 帅琴, 靳兰兰. 激光剥蚀等离子体质谱分析中激光剥蚀参数对信号响应的影响. 岩矿测试, 2005, (3): 171-175.

[15]

赵令浩, 詹秀春, 胡明月, 孙冬阳, 范晨子, 袁继海, 蒯丽君, 屈文俊. 锍镍试金技术制备含铂族元素硫化物微区分析标准样品的可行性. 岩矿测试, 2013, 32(5): 694-701.

[16]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[17]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[18]

赵令浩, 詹秀春, 胡明月, 范晨子, 孙冬阳, 刘传宝. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用. 岩矿测试, 2013, 32(1): 1-14.

[19]

陈立军, 汪涛. 1:20万区域化探样品的分析测试质量监控. 岩矿测试, 2004, (2): 143-147.

[20]

刘浴辉, BELSHAW Nick, 胡超涌. 疏松质石笋碳酸盐的精确微区取样. 岩矿测试, 2012, 31(1): 103-112.

计量
  • PDF下载量(12)
  • 文章访问量(617)
  • 被引次数(0)
目录

Figures And Tables

非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成

周帆, 李明, 柴辛娜, 胡兆初, 罗涛, 胡圣虹