【引用本文】 杨文蕾, 沈亚婷, . 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052
YANG Wen-lei, SHEN Ya-ting. A Review of Research Progress on the Absorption Mechanism of Arsenic and Agronomic Pathways to Control Arsenic Absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052

水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质大学(北京), 北京 100083

3. 

自然资源部生态地球化学重点实验室, 北京 100037

收稿日期: 2020-04-16  修回日期: 2020-06-06  接受日期: 2020-06-09

基金项目: 国家自然科学基金面上项目(41877505);国家重点研发计划项目(2016YFC0600603)

作者简介: 杨文蕾, 硕士研究生, 主要研究方向为生物地球化学。E-mail:yangwenleiywl@163.com

通信作者: 沈亚婷, 硕士, 副研究员, 主要研究方向为生物地球化学。E-mail:always1204@163.com

A Review of Research Progress on the Absorption Mechanism of Arsenic and Agronomic Pathways to Control Arsenic Absorption

1. 

National Research Centrefor Geoanalysis, Beijing 100037, China

2. 

China University of Geosciences(Beijing), Beijing 100083, China

3. 

Key Laboratory of Eco-Environmental Geochemistry, Ministry of Natural Resources, Beijing 100037, China

Corresponding author: SHEN Ya-ting, always1204@163.com

Received Date: 2020-04-16
Revised Date: 2020-06-06
Accepted Date: 2020-06-09

摘要:全世界约一半人口以大米为主食,亚洲人口主食对水稻的依赖程度甚至超过90%。当前全球各地均存在不同程度的砷(As)污染,水稻容易在籽粒中积累砷,从而使砷通过食物链进入人体,威胁人体健康。水稻中砷含量水平为几个到几百个ng/g不等,砷从土壤进入水稻的过程涉及复杂的物理化学过程和形态转化,最终主要以砷酸、亚砷酸及砷的巯基、甲基配位等形态储存于大米中。田间水管理、施肥以及添加土壤改良剂等方法都可以控制稻田农田生态系统中水稻对砷的吸收,但是每种技术都有其优势和局限性。水稻农田生态系统中砷生物地球化学及水稻对砷的吸收和代谢等诸多因素都影响着水稻及谷粒中砷的浓度。综合考虑农艺活动对土壤中pH、氧化还原条件、有机质结构和共存元素等因素的影响,考虑不同的地域特征和经济因素,是在生产实践中实现控制水稻对砷吸收的关键。综合运用多种农艺方法进行水稻耕作是未来控制水稻吸收砷的重要途径;新型农艺方法在控制水稻吸收砷过程中的应用,气候变化对大米吸收砷的影响,以及非破坏原位与活体分析技术在砷形态分析中的应用,是未来在全球尺度上更科学有效地控制大米中的砷含量、降低人体砷暴露风险的关键,也是未来的重点发展方向和艰巨挑战。

关键词: 水稻, , 铁膜, 灌溉, 水管理, 施肥, 土壤改良剂, 健康地质

要点

(1)水稻吸收砷的过程会受到土壤pH、氧化还原条件、有机质和共存元素等关键因素的影响。

(2)综合运用田间水管理、施肥和土壤改良剂是经济、有效地控制水稻吸收砷的重要途径。

(3)气候变化可能会在全球尺度上增加水稻中砷的含量水平。

(4)拓展砷的形态分析技术是未来开展砷在环境中迁移转化和毒性研究的关键。

A Review of Research Progress on the Absorption Mechanism of Arsenic and Agronomic Pathways to Control Arsenic Absorption

ABSTRACT

BACKGROUND:

Rice is the staple food of about half of the world's population, and the dependence of Asian staple food on rice exceeds 90%. There are varying degrees of arsenic (As) pollution all over the world. As can accumulate in rice and enter the human body, causing health problems.

OBJECTIVES:

To reveal the mechanism of As absorption in rice.

METHODS:

The content and species characteristics of As absorbed by rice and the species analysis techniques were reviewed. The mechanisms of As absorption, tolerance and detoxification by rice were summarized.

RESULTS:

The content of As in rice ranged from a few to several hundred ng/g. The process of As entering the rice from the soil involved complex physical and chemical changes and species transformation. Arsenic mainly existed in the form of arsenate, arsenite, thiol and methyl coordination in rice. Field water management, fertilization and soil amendments controlled the absorption of As in rice. Each technique had their advantages and disadvantages. Soil pH, redox conditions, organic matter and coexisting elements were the key factors affecting As absorption by rice. Agronomic methods can control the absorption of As by rice. Many factors such as arsenic biogeochemistry and the absorption and metabolism of arsenic in rice agroecosystems affect the concentration of arsenic in rice and grain. Comprehensive consideration of the effects of agronomic activities on soil pH, redox conditions, organic matter structure and coexisting elements, and different geographic factors such as soil characteristics and economic factors were the keys to realize the control of arsenic absorption by rice in production practice.

CONCLUSIONS:

Comprehensive use of multiple agronomic methods for rice farming is an important way to control the absorption of arsenic in rice in the future. Application of new agronomic methods in the control of arsenic absorption by rice, the impact of climate change on arsenic absorption by rice, and application of non-destructive in situ and in vivo analysis techniques for As speciation analysis, are keys for more scientifically and effectively controlling the arsenic content in rice and reducing the risk of human As exposure on the global scale in the future. These are also the key development directions and challenges in the future.

KEY WORDS: rice, arsenic, iron plaque, aerobic irrigation, water management, fertilization, soil amendment, healthy geology

Highlights

(1) Soil pH, redox conditions, organic matter and coexisting elements are the key factors affecting As absorption by rice.

(2) The comprehensive use of field water management, fertilization and soil amendments is an important way to control the absorption of As in rice.

(3) Climate change may increase the level of As in rice on a global scale.

(4) Expanding the As speciation analysis is the key to carrying out research on the transport, transformation and toxicity of As in the environment in the future.

本文参考文献

[1]

Liu J, Dhungana B, Cobb G P, et al. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants[J]. Environmental Toxicology & Chemistry, 2018, 37(1): 11-20.

[2]

Wang Z, Tan X, Lu G, et al. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity[J].Ecotoxicology Environmental Safety, 2018, 147: 266-274. doi: 10.1016/j.ecoenv.2017.08.050

[3]

Cullen W R, Reimer K J. Arsenic speciation in the environment[J].Chemical Reviews, 1989, 89(4): 713-764. doi: 10.1021/cr00094a002

[4]

Fendorf S, Michael H A, van Geen A, et al. Spatial and temporal variations of groundwater arsenic in south and southeast Asia[J].Science, 2010, 328(5982): 1123-1127. doi: 10.1126/science.1172974

[5]

Zhu Y G, Yoshinaga M, Zhao F J, et al. Earth abides arsenic biotransformations[J].Annual Review of Earth and Planetary Sciences, 2014, 42(1): 443-467. doi: 10.1146/annurev-earth-060313-054942

[6]

刘景龙, 吴巧丽. 原子荧光光谱仪工作温度对水体中砷含量测定的影响[J]. 岩矿测试, 2019, 38(2): 228-232.

Liu J L, Wu Q L. Effect of temperatures on determination ofarsenic in water by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 228-232.

[7]

Yu L, Witt T, Bonilla M R, et al. New insights into cooked rice quality by measuring modulus, adhesion and cohesion at the level of an individual rice grain[J].Journal of Food Engineering, 2019, 240: 21-28. doi: 10.1016/j.jfoodeng.2018.07.010

[8]

Kumarathilaka P, Seneweera S, Meharg A, et al. Arsenic speciation dynamics in paddy rice soil-water environment:Sources, physico-chemical, and biological factors-A review[J]. Water Research, 2018, 140(1): 403-414.

[9]

Tian F, Fu Q, Zhu Z F, et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits[J].Theoretical and Applied Genetics, 2006, 112(3): 570-580. doi: 10.1007/s00122-005-0165-2

[10]

Xue S, Shi L, Wu C, et al. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines[J].Environmental Research, 2017, 156: 23-30. doi: 10.1016/j.envres.2017.03.014

[11]

Sohn E. The toxic side of rice[J].Nature, 2014, 514: 62-63. doi: 10.1038/514S62a

[12]

Meharg A A, Williams P N, Adomako E, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice[J]. Environmental Science & Technology, 2009, 43(5): 1612-1617.

[13]

Fu Y R, Chen M L, Bi X Y, et al. Occurrence of arsenic in brown rice and its relationship to soil properties from hainan island, China[J].Environmental Pollution, 2011, 159(7): 1757-1762. doi: 10.1016/j.envpol.2011.04.018

[14]

Fakhri Y, Bjrklund G, Bandpei A M, et al. Concentrations of arsenic and lead in rice (Oryza sativa L.) in iran:A systematic review and carcinogenic risk assessment[J].Food and Chemical Toxicology, 2018, 113: 267-277. doi: 10.1016/j.fct.2018.01.018

[15]

Ye W L, Khan M A, McGrath S P, et al. Phytoreme-diation of arsenic contaminated paddy soils with pteris vittata markedly reduces arsenic uptake by rice[J].Environmental Pollution, 2011, 159(12): 3739-3743. doi: 10.1016/j.envpol.2011.07.024

[16]

Raab A, Baskaran C, Feldmann J, et al. Cooking rice in a high water to rice ratio reduces inorganic arsenic content[J]. Journal of Environmental Monitoring, 2009, 11(1): 41-44.

[17]

Taylor V, Goodale B, Raab A, et al. Human exposure to organic arsenic species from seafood[J].Science of the Total Environment, 2017, 580: 266-282. doi: 10.1016/j.scitotenv.2016.12.113

[18]

Pradeep A, Filip T, Du L G, et al. HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota[J].Biomedical Chromatography, 2012, 26(4): 524-533. doi: 10.1002/bmc.1700

[19]

Zhao F J, Zhu Y G, Meharg A A, et al. Methylated arsenic species in rice:Geographical variation, origin, and uptake mechanisms[J]. Environmental Science & Technology, 2013, 47(9): 3957-3966.

[20]

Williams P N, Price A H, Raab A, et al. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure[J]. Environmental Science & Technology, 2005, 39(15): 5531-5540.

[21]

Batista B L, Souza J M O, de Souza S S, et al. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by brazilians through rice consumption[J]. Journal of Hazardous Materials, 2011, 191(1): 342-348.

[22]

Mandal B K, Suzuki K T, Anzai K, et al. Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of west Bengal, India[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(12): 1741-1752.

[23]

Hansen H R, Raab A, Price A H, et al. Identification of tetramethylarsonium in rice grains with elevated arsenic content[J]. Journal of Environmental Monitoring, 2011, 13(1): 32-34.

[24]

Quaghebeur M, Rengel Z. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply[J].Plant Physiology, 2003, 132(3): 1600-1609. doi: 10.1104/pp.103.021741

[25]

Raab A, Schat H, Meharg A A, et al. Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus):Formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J].New Phytologist, 2005, 168(3): 551-558. doi: 10.1111/j.1469-8137.2005.01519.x

[26]

Leermakers M, Baeyens W, de Gieter M, et al. Toxic arsenic compounds in environmental samples:Speciation and validation[J].TrAC Trends in Analytical Chemistry, 2006, 25(1): 1-10. doi: 10.1016/j.trac.2005.06.004

[27]

Halder D, Biswas A, Šlejkovec Z, et al. Arsenic species in raw and cooked rice:Implications for human health in rural Bengal[J]. Science of the Total Environment, 2014, 497: 200-208.

[28]

Dixit G, Singh A P, Kumar A, et al. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice[J].Journal of Hazardous Materials, 2015, 298: 241-251. doi: 10.1016/j.jhazmat.2015.06.008

[29]

Meharg A A, Hartley W J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J].New Phytologist, 2002, 154(1): 29-43. doi: 10.1046/j.1469-8137.2002.00363.x

[30]

Maher W, Foster S, Krikowa F, et al. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICP-MS:Verification using XANES[J]. Environmental Science & Technology, 2013, 47(11): 5821-5827.

[31]

Pickering I J. Reduction and coordination of arsenic in Indian mustard[J]. Plant Physiology, 2000, 122(4): 1171-1178.

[32]

Webb S M, Gaillard J F O, Ma L Q, et al. XAS speciation of arsenic in a hyper-accumulating fern[J]. Environmental Science & Technology, 2003, 37(4): 754-760.

[33]

Fu Y Q, Yu Z W, Cai K Z, et al. Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects:A review[J]. Plant Nutrition & Fertilizer Science, 2010, 16(6): 1527-1534.

[34]

Zhang C, Ying G E, Yao H, et al. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils:A review[J]. Frontiers of Environmental Science & Engineering, 2012, 56(3): 376-381.

[35]

Wu C, Ye Z, Hui L, et al. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?[J].Journal of Experimental Botany, 2012, 63(8): 2961-2970. doi: 10.1093/jxb/ers017

[36]

Yang J, Tam N F Y, Ye Z, et al. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J].Plant and Soil, 2014, 374: 815-828. doi: 10.1007/s11104-013-1922-7

[37]

Mei X Q, Ye Z H, Wong M H, et al. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J].Environmental Pollution, 2009, 157(8-9): 2550-2557. doi: 10.1016/j.envpol.2009.02.037

[38]

Wu C, Ye Z, Shu W, et al. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes[J].Journal of Experimental Botany, 2011, 62(8): 2889-2898. doi: 10.1093/jxb/erq462

[39]

Wang X, Yao H, Wong M H, et al. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on cadmium and arsenic accumulation in rice (Oryza sativa L.)[J]. Environmental Geochemistry & Health, 2013, 35(6): 779-788.

[40]

Li Y, Li H L, Yu Y, et al. Thio-sulfate amendment reduces mercury accumulation in rice (Oryza sativa L.)[J]. Plant & Soil, 2018, 430: 413-422.

[41]

Yamaguchi N, Ohkura T, Takahashi Y, et al. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix[J]. Environmental Science & Technology, 2014, 48(3): 1549-1556.

[42]

Chen X P, Kong W D, He J Z, et al. Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?[J]. Journal of Plant Nutrition & Soil Science, 2008, 171(2): 193-199.

[43]

Du J, Yan C, Li Z, et al. Formation of iron plaque on mangrove Kandalar.Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation[J]. Marine Pollution Bulletin, 2013, 74(1): 105-109.

[44]

Liu J, Luo L Q. Uptake and transport of Pb across the iron plaque of waterlogged dropwort (Oenanthe javanica DC.) based on micro-XRF and XANES[J]. Plant and Soil, 2019, 552(1): 191-205.

[45]

Liu W J, Zhu Y G, Smith F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?[J]. Journal of Experimental Botany, 2004, 403(50): 1707-1713.

[46]

Huang H, Jia Y, Sun G X, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 2012, 46(4): 2163-2168.

[47]

Chen Z, Zhu Y G, Liu W J, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots[J]. New Phytologist, 2005, 165: 91-97.

[48]

Xu X Y, McGrath S P, Meharg A A, et al. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environmental Science & Technology, 2008, 42(15): 5574-5579.

[49]

Syu C H, Jiang P Y, Huang H H, et al. Arsenic seque-stration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter[J].Soil Science & Plant Nutrition, 2013, 59(3): 463-471.

[50]

Lei M, Tie B, Williams P N, et al. Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse[J]. Journal of Soils & Sediments, 2011, 11(1): 115-123.

[51]

Wu C, Huang L, Xue S G, et al. Oxic and anoxic condi-tions affect arsenic (As) accumulation and arsenite transporter expression in rice[J]. Chemosphere, 2016, 168(1-7): 969-975.

[52]

Farooqa M A, Islama F, Aliab B, et al. Arsenic toxicity in plants:Cellular and molecular mechanisms of its transport and metabolism[J]. Environmental & Experimental Botany, 2016, 132: 42-52.

[53]

Seyfferth A L, Webb S M, Andrews J C, et al. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings[J]. American Chemical Society, 2010, 44(21): 8108-8113.

[54]

Liu W J, Zhu Y G, Hu Y, et al. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environmental Science & Technology, 2006, 40(18): 5730-5736.

[55]

Jian F M, Yamaji N, Mitani N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9931-9935. doi: 10.1073/pnas.0802361105

[56]

Li R Y, Ago Y, Liu W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J].Plant Physiology, 2009, 150(4): 2071-2080. doi: 10.1104/pp.109.140350

[57]

Jian F M, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice[J].Nature, 2007, 448(7150): 209-212. doi: 10.1038/nature05964

[58]

Ma J F, Tamai Y, Mitani K, et al. A silicon transporter in rice[J].Nature, 2006, 440(7084): 688-691. doi: 10.1038/nature04590

[59]

Schat H. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J].Plant Journal, 2006, 45(6): 917-929. doi: 10.1111/j.1365-313X.2005.02651.x

[60]

Duan G L, Zhu Y G, Tong Y P, et al. Characterization of arsenate reductase in the extract of roots and fronds of chinese brake fern, an arsenic hyperaccumulator[J].Plant Physiology, 2005, 138(1): 461-469. doi: 10.1104/pp.104.057422

[61]

Andrea R, H W S, Marcel J, et al. Pentavalent arsenic can bind to biomolecules[J].Angewandte Chemie International Edition, 2007, 46(15): 2594-2597. doi: 10.1002/anie.200604805

[62]

Carey A M, Scheckel K G, Lombi E, et al. Grain unload-ing of arsenic species in rice[J].Plant Physiology, 2010, 152(1): 309-319. doi: 10.1104/pp.109.146126

[63]

Bhattacharyya P, Ghosh A K, Chakraborty A, et al. Arsenic uptake by rice and accumulation in soil amended with municipal solid waste compost[J]. Communications in Soil Science & Plant Analysis, 2003, 34(19-20): 2779-2790.

[64]

Islam M R, Islam S, Jahiruddin M, et al. Effects of irrigation water arsenic in the rice-rice cropping system[J].Journal of Biological Sciences, 2004, 4(4): 542-546. doi: 10.3923/jbs.2004.542.546

[65]

Liu H, Liu G, Zhou Y, et al. Spatial distribution and influence analysis of soil heavy metals in a hilly region of Sichuan Basin[J].Polish Journal of Environmental Studies, 2017, 26(2): 725-732. doi: 10.15244/pjoes/65152

[66]

Adomako E E, Solaiman A R M, Williams P N, et al. Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU[J].Environment International, 2009, 35(3): 476-479. doi: 10.1016/j.envint.2008.07.010

[67]

Lu Y, Adomako E E, Solaiman A R M, et al. Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice[J]. Environmental Science & Technology, 2009, 43: 1724-1729.

[68]

Smith E, Naidu R, Alston A M, et al. Arsenic in the soil environment:A review[J].Advances in Agronomy, 1998, 64: 149-195. doi: 10.1016/S0065-2113(08)60504-0

[69]

Marin A R, Masscheleyn P H, Patrick W H, et al. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice[J]. Plant & Soil, 2003, 152(2): 245-253.

[70]

Yamaguchi N, Nakamura T, Dong D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J].Chemosphere, 2011, 83(7): 925-932. doi: 10.1016/j.chemosphere.2011.02.044

[71]

Toxicology C, Council N, Sciences N A.Arsenic in drink-ing water:2001 update[M].National Academies Press, 2001.

[72]

Smedley P, Kinniburgh D. A review of the source, behav-iour and distribution of arsenic in natural waters[J].Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5

[73]

Bissen M, Frimmel F H. Arsenic-A review.Part Ⅰ:Occurrence, toxicity, speciation, mobility[J].Acta Hydrochimica et Hydrobiologica,, 2003, 31(1): 9-18. doi: 10.1002/aheh.200390025

[74]

Delaune R D. The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil[J]. Environment International-A Journal of Environmental Science Risk & Health, 1999, 25(5): 613-618.

[75]

Signes-Pastor A, BurlóF , Mitra K, et al. Arsenic biogeo-chemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil[J].Geoderma, 2007, 137(3-4): 504-510. doi: 10.1016/j.geoderma.2006.10.012

[76]

Ahmed Z U, Panaullah G M, Gauch H, et al. Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh[J]. Plant & Soil, 2011, 338(1-2): 367-382.

[77]

Li F, Zheng Y M, He J Z, et al. Microbes influence the frac-tionation of arsenic in paddy soils with different fertilization regimes[J].Science of the Total Environment, 2009, 407: 2631-2640. doi: 10.1016/j.scitotenv.2008.12.021

[78]

董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510-517.

Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510-517.

[79]

Dixit S, Hering J G. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxideminerals:Implications for arsenic mobility[J].Environmental Science & Technology, 2003, 37(18): 4182-4189.

[80]

Arao T, Kawasaki A, Baba K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43(24): 9361-9367.

[81]

Xu X Y, McGrath S P, Meharg A A, et al. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environmental Science & Technology, 2008, 42(15): 5574-5579.

[82]

Zobrist J, Dowdle P R, Davis J A, et al. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J]. Environmental Science & Technology, 2000, 34(22): 4747-4753.

[83]

Nickson R T, Mcarthur J M, Ravenscroft P, et al. Mechanism of arsenic release to groundwater, Bangladesh and west Bengal[J].Applied Geochemistry, 2000, 15(4): 403-413. doi: 10.1016/S0883-2927(99)00086-4

[84]

Wang S L, Mulligan C N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater[J].Environmental Geochemistry and Health, 2006, 28(3): 197-214. doi: 10.1007/s10653-005-9032-y

[85]

Weng L P, van Riemsdijk W H, Hiemstra T, et al. Effects of fulvic and humic acids on arsenate adsorption to goethite:Experiments and modeling[J]. Environmental Science & Technology, 2009, 43(19): 7198-7204.

[86]

Redman A D, Macalady D L, Ahmann D, et al. Natural organic matter affects arsenic speciation and sorption onto hematite[J]. Environmental Science & Technology, 2002, 36(13): 2889-2896.

[87]

Grafe M, Eick M J, Grossl P R, et al. Adsorption of arsenate(Ⅴ) and arsenite(Ⅲ) on goethite in the presence and absence of dissolved organic carbon[J].Soil Science Society of America Journal, 2001, 65(6): 1680-1687. doi: 10.2136/sssaj2001.1680

[88]

Blodau C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J].Science of the Total Environment, 2006, 354(2-3): 179-190. doi: 10.1016/j.scitotenv.2005.01.027

[89]

Kappler A. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10): 3639-3645.

[90]

Paikaray S, Banerjee S, Mukherji S, et al. Sorption of arsenic onto Vindhyan shales:Role of pyrite and organic carbon[J]. Chemical Biology & Drug Design, 2005, 83(2): 198-206.

[91]

Williams P N, Hao Z, Davison W, et al. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J]. Environmental Science & Technology, 2011, 45(14): 6080-6087.

[92]

Kathleen A R, Zhong Q C, Mohammad W R, et al. Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh[J]. Environmental Science & Technology, 2007, 41(10): 3639-3645.

[93]

Sigg L. Arsenite and arsenate binding to dissolved humic acids:Influence of pH, type of humic acid, and aluminum[J]. Environmental Science & Technology, 2006, 40(19): 6015-6020.

[94]

Warwick P, Inam E, Evans N, et al. Arsenic's interaction with humic acid[J].Environmental Chemistry, 2005, 2: 1-18. doi: 10.1071/EN05017

[95]

Liu G, Cai Y. Complexation of arsenite with dissolved organic matter:Conditional distribution coefficients and apparent stability constants[J].Chemosphere, 2010, 81(7): 890-896. doi: 10.1016/j.chemosphere.2010.08.002

[96]

Khan S, Reid B J, Li G, et al. Application of biochar to soil reduces cancer risk via rice consumption:A case study in Miaoqian village, Longyan, China[J].Environment International, 2014, 68: 154-161. doi: 10.1016/j.envint.2014.03.017

[97]

Beiyuan J, Awad Y M, Beckers F, et al. Mobility and phytoavailability of As and Pb in a contaminated soil using pine saw dust biochar under systematic change of redox conditions[J].Chemosphere, 2017, 178: 110-118. doi: 10.1016/j.chemosphere.2017.03.022

[98]

Mohan D, Sarswat A, Ok Y S, et al. Organic and inorgan-ic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review[J].Bioresource Technology, 2014, 160: 191-202. doi: 10.1016/j.biortech.2014.01.120

[99]

Hu X, Ding Z, Zimmerman A R, et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis[J].Water Research, 2015, 68: 206-216. doi: 10.1016/j.watres.2014.10.009

[100]

Samsuri A W, Sadeghzadeh F, Sehbardan B J, et al. Adsorption of As(Ⅲ) and As(Ⅴ) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J].Journal of Environmental Chemical Engineering, 2013, 1(4): 981-988. doi: 10.1016/j.jece.2013.08.009

[101]

Macalady D L. Evidence for the aquatic binding of arsenate by natural organic matter:Suspended Fe(Ⅲ)[J]. Environmental Science & Technology, 2006, 40(17): 5380-5387.

[102]

Kappler A. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As[J]. Environmental Science & Technology, 2010, 44(12): 4479-4485.

[103]

Cai Y. Complexation of arsenite with humic acid in the presence of ferric iron[J].Environmental Science & Technology, 2011, 45(8): 3210-3216.

[104]

Reza A H M S, Jean J S, Lee M K, et al. Implications of organic matter on arsenic mobilization into groundwater:Evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh[J].Water Research, 2010, 44(17): 5556-5574.

[105]

Das K. Mobilisation of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic[J]. Plant Soil & Environment, 2008, 54(1): 30-37.

[106]

Jiang W, Hou Q, Yang Z, et al. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content[J].Environmental Pollution, 2014, 188: 159-165. doi: 10.1016/j.envpol.2014.02.014

[107]

Wu C, Zou Q, Xue S G, et al. Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants[J].Chemosphere, 2016, 165: 478-486. doi: 10.1016/j.chemosphere.2016.09.061

[108]

Zhao F J, McGrath S P, Meharg A A, et al. Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J].Annual Review of Plant Biology, 2010, 61(1): 535-559. doi: 10.1146/annurev-arplant-042809-112152

[109]

Zhang L, Hu B, Li W, et al. OSPT2, a phosphate transporter, is involved in the active uptake of selenite in rice[J].New Phytologist, 2014, 201(4): 1183-1191. doi: 10.1111/nph.12596

[110]

Younoussa A, Wan Y, Yu Y, et al.Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.)[J].Ecotoxicology & Environmental Safety, 2018, 148: 869-875.

[111]

Ehlert K, Mikutta C, Kretzschmar R, et al. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite[J]. Environmental Science & Technology, 2014, 48(19): 11320-11329.

[112]

Lafferty B J, Ginder-Vogel M, Sparks D L, et al. .Arsenite oxidation by a poorly crystalline manganese-oxide 1.Stirred-flow experiments[J]. Environmental Science & Technology, 2010, 44(22): 8460-8466.

[113]

Liu W J, Zhu Y G, Smith F, et al. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite[J].Plant and Soil, 2005, 277(1-2): 127-138. doi: 10.1007/s11104-005-6453-4

[114]

Zhang J, Zhao Q Z, Duan G L, et al. Influence of sulphur on arsenic accumulation and metabolism in rice seedlings[J]. Environmental & Experimental Botany, 2011, 72(1): 34-40.

[115]

Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants[J]. New Phytologist, 2008, 181(4): 777-794.

[116]

Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.[J]. Plant & Cell Physiology, 2005, 46(12): 1915-1923.

[117]

Singh H P, Kaur S, Batish D R, et al. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice)[J]. Nitric Oxide Biology & Chemistry, 2009, 20(4): 289-297.

[118]

Meharg A, Jardine L. Arsenite transport into paddy rice (Oryza sativa) roots[J]. New Phytologist, 2002, 157(1): 39-44.

[119]

Hu P, Huang J, Ouyang Y, et al. Water management affects arsenic and cadmium accumulation in different rice cultivars[J].Environmental Geochemistry and Health, 2013, 35(6): 767-778. doi: 10.1007/s10653-013-9533-z

[120]

Huq S M I, Shila U K, Joardar J C, et al. Arsenic mitigation strategy for rice, using water regime management[J]. Land Contamination & Reclamation, 2006, 14(4): 805-813.

[121]

Honma T, Ohba H, Kaneko A, et al. Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L.cv.Koshihikari) under different water management practices[J].Soil Science and Plant Nutrition, 2016, 62(4): 349-356. doi: 10.1080/00380768.2016.1196569

[122]

Sahrawat K L. Redox potential and pH as major drivers of fertility in submerged rice soils:A conceptual framework for management[J].Communications in Soil Science and Plant Analysis, 2015, 46(13): 1597-1606. doi: 10.1080/00103624.2015.1043451

[123]

Jia Y, Huang H, Sun G, et al. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil[J]. Environmental Science & Technology, 2012, 46(15): 8090-8096.

[124]

Dittmar J, Voegelin A, Roberts L C, et al. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh.2.Paddy soil[J]. Environmental Science & Technology, 2007, 41(17): 5967-5972.

[125]

Newbigging A M, Paliwoda R E, Le X C, et al. Rice:Reducing arsenic content by controlling water irrigation[J].Journal of Environmental Sciences-China, 2015, 30(4): 129-131.

[126]

Morenojimenez E, Meharg A A, Smolders E, et al. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium[J]. Science of the Total Environment, 2014, 485: 468-473.

[127]

Roberts L C, Hug S J, Dittmar J, et al. Arsenic release from paddy soils during monsoon flooding[J].Nature Geoscience, 2010, 3(1): 53-59. doi: 10.1038/ngeo723

[128]

Basu B, Kundu M, Hedayatullah M D, et al. Mitigation of arsenic in rice through deficit irrigation in field and use of filtered water in kitchen[J].International Journal of Environmental Science and Technology, 2015, 12(6): 2065-2070. doi: 10.1007/s13762-014-0568-1

[129]

Bengough A G, Mckenzie B M, Hallett P D, et al. Root elongation, water stress, and mechanical impedance:A review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany, 2011, 62(1): 59-68.

[130]

Lee C H, Wu C H, Syu C H, et al. Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils[J].Geoderma, 2016, 270: 60-67. doi: 10.1016/j.geoderma.2016.01.003

[131]

Geng C N, Zhu Y G, Liu W J, et al. Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations[J].Aquatic Botany, 2005, 83(4): 321-331. doi: 10.1016/j.aquabot.2005.07.003

[132]

Mew M. Phosphate rock costs, prices and resources interaction[J].Science of the Total Environment, 2016, 542: 1008-1012. doi: 10.1016/j.scitotenv.2015.08.045

[133]

Neset T S S, Cordell D. Global phosphorus scarcity:Identifying synergies for a sustainable future[J].Journal of the Science of Food and Agriculture, 2012, 92(1): 2-6. doi: 10.1002/jsfa.4650

[134]

Charter R, Tabatabai M, Schafer J, et al. Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks[J].Communications in Soil Science and Plant Analysis, 1995, 26(17-18): 3051-3062. doi: 10.1080/00103629509369508

[135]

Fayiga A O, Saha U K. Arsenic hyperaccumulating fern:Implications for remediation of arsenic contaminated soils[J].Geoderma, 2016, 284: 132-143. doi: 10.1016/j.geoderma.2016.09.003

[136]

Fleck A T, Mattusch J, Schenk M K, et al. Silicon decreases the arsenic level in rice grain by limiting arsenite transport[J].Journal of Plant Nutrition and Soil Science, 2013, 176(5): 785-794. doi: 10.1002/jpln.201200440

[137]

Wu C, Zou Q, Xue S, et al. Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL)[J].Chemosphere, 2015, 138: 447-453. doi: 10.1016/j.chemosphere.2015.06.081

[138]

Lee C H, Huang H H, Syu C H, et al. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application[J]. Journal of Hazardous Materials, 2014, 276(15): 253-261.

[139]

Seyfferth A L, Fendorf S. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2012, 46(24): 13176-13183.

[140]

Desplanques V, Cary L, Mouret J C, et al. Silicon transfers in a rice field in Camargue (France)[J].Journal of Geochemical Exploration, 2006, 88(1-3): 190-193. doi: 10.1016/j.gexplo.2005.08.036

[141]

Seyfferth A L, Morris A H, Gill R, et al. Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain[J].Journal of Agricultural and Food Chemistry, 2016, 64(19): 3760-3766. doi: 10.1021/acs.jafc.6b01201

[142]

Dixit G, Singh A P, Kumar A, et al. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves[J].Journal of Hazardous Materials, 2015, 298: 241-251. doi: 10.1016/j.jhazmat.2015.06.008

[143]

Chen S, Sun L, Sun T, et al. Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system[J].Environmental Geochemistry and Health, 2007, 29(5): 435-446. doi: 10.1007/s10653-007-9088-y

[144]

Astolfi S, Zuchi S, Neumann G, et al. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation[J]. Journal of Experimental Botany, 2011, 63: 1241-1250.

[145]

Singh M, Kushwaha B K, Singh S, et al. Sulphur alters chromium(Ⅵ) toxicity in solanum melongena seedlings:Role of sulphur assimilation and sulphur-containing antioxidants[J]. Plant Physiology & Biochemistry, 2017, 112: 183-192.

[146]

Burton E D, Johnston S G, Kocar B D, et al. Arsenic mobility during flooding of contaminated soil:The effect of microbial sulfate reduction[J]. Environmental Science & Technology, 2014, 48(23): 13660-13667.

[147]

Zhang J, Zhao Q Z, Duan G L, et al. Influence of sulphur on arsenic accumulation and metabolism in rice seedlings[J]. Environmental & Experimental Botany, 2011, 72(1): 34-40.

[148]

Song W Y, Yamaki T, Yamaji N, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 699-704.

[149]

Batista B L, Nigar M, Mestrot A, et al. Identification and quantification of phytochelatins in roots of rice to long-term exposure:Evidence of individual role on arsenic accumulation and translocation[J].Journal of Experimental Botany, 2014, 65(6): 1467-1479. doi: 10.1093/jxb/eru018

[150]

Srivastava S, Akkarakaran J J, Sounderajan S, et al. Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply:Impact on the expression of transporters and thiol metabolism[J].Geoderma, 2016, 270: 33-42. doi: 10.1016/j.geoderma.2015.11.006

[151]

Kerl C F, Rafferty C, Clemens S, et al. Monothioarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161.

[152]

Planerfriedrich B, Hartig C, Lohmayer R, et al. Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate[J]. Environmental Science & Technology, 2015, 49(11): 6554-6563.

[153]

Planerfriedrich B, Suess E, Scheinost A C, et al. Arsenic speciation in sulfidic waters:Reconciling contradictory spectroscopic and chromatographic evidence[J].Analytical Chemistry, 2010, 82(24): 10228-10235. doi: 10.1021/ac1024717

[154]

Edwardson C F, Planerfriedrich B, Hollibaugh J T, et al. Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria[J].FEMS Microbiology Ecology, 2014, 90(3): 858-868. doi: 10.1111/1574-6941.12440

[155]

Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution, 2011, 159(1): 84-91. doi: 10.1016/j.envpol.2010.09.019

[156]

Couture R, Rose J, Kumar N, et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides:A kinetic and spectroscopic investigation[J]. Environmental Science & Technology, 2013, 47(11): 5652-5659.

[157]

Miretzky P, Cirelli A F. Remediation of arsenic-contaminated soils by iron amendments:A review[J].Critical Reviews in Environmental Science and Technology, 2010, 40(2): 93-115. doi: 10.1080/10643380802202059

[158]

Fendorf S, Eick M J, Grossl P, et al. Arsenate and chromate retention mechanisms on goethite.1.Surface structure[J]. Environmental Science & Technology, 1997, 31(2): 315-320.

[159]

Luong V T, Kurz E E C, Hellriegel U, et al. Iron-based subsurface arsenic removal technologies by aeration:A review of the current state and future prospects[J].Water Research, 2018, 133: 110-122. doi: 10.1016/j.watres.2018.01.007

[160]

Matsumoto S, Kasuga J, Taiki N, et al. Inhibition of arsenic accumulation in japanese rice by the application of iron and silicate materials[J].Catena, 2015, 135: 328-335. doi: 10.1016/j.catena.2015.07.004

[161]

Ultra Jr V U, Nakayama A, Tanaka S, et al. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments[J].Soil Science and Plant Nutrition, 2009, 55(1): 160-169. doi: 10.1111/j.1747-0765.2008.00341.x

[162]

Mladenov N, Zheng Y, Simone B, et al. Dissolved organic matter quality in a shallow aquifer of bangladesh:Implications for arsenic mobility[J]. Environmental Science & Technology, 2015, 49(18): 10815-10824.

[163]

Zeng H, Fisher B, Giammar D E, et al. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J]. Environmental Science & Technology, 2008, 42(1): 147-152.

[164]

Yu H Y, Wang X, Li F, et al. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice[J].Environmental Pollution, 2017, 224: 136-147. doi: 10.1016/j.envpol.2017.01.072

[165]

Xu X, Chen C, Wang P, et al. Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution, 2017, 231: 37-47. doi: 10.1016/j.envpol.2017.07.084

[166]

Komárek M, Vaněk A, Ettler V, et al. Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review[J].Environmental Pollution, 2013, 172: 9-22. doi: 10.1016/j.envpol.2012.07.045

[167]

Lee C H, Wang C C, Lin H H, et al. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil[J].Science of the Total Environment, 2018, 619-620: 665-671. doi: 10.1016/j.scitotenv.2017.11.023

[168]

Jayawardhana Y, Kumarathilaka P, Mayakaduwa S, et al.Characteristics of municipal solid waste biochar:Its potential to be used in environmental remediation[M]//Utilization and Management of Bioresources.2018:209-220.

[169]

Hashimoto Y, Kanke Y. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J].Environmental Pollution, 2018, 238: 617-623. doi: 10.1016/j.envpol.2018.03.039

[170]

Jayawardhana Y, Mayakaduwa S S, Kumarathilaka P, et al. Municipal solid waste-derived biochar for the removal of benzene from landfill leachate[J]. Environmental Geochemistry and Health, 2019, 41(4): 1-15.

[171]

Bandara T, Herath I, Kumarathilaka P, et al. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil[J].Environmental Geochemistry and Health, 2017, 39(2): 391-401. doi: 10.1007/s10653-016-9842-0

[172]

Herath I, Kumarathilaka P, Navaratne A, et al. Immo-bilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar[J].Journal of Soils and Sediments, 2015, 15(1): 126-138. doi: 10.1007/s11368-014-0967-4

[173]

Wang N, Xue X, Juhasz A L, et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J].Environmental Pollution, 2017, 220: 514-522. doi: 10.1016/j.envpol.2016.09.095

[174]

Yin D, Wang X, Peng B, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J].Chemosphere, 2017, 186: 928-937. doi: 10.1016/j.chemosphere.2017.07.126

[175]

Kappler A, Wuestner M L, Ruecker A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J].Environmental Science and Technology Letters, 2014, 1(8): 339-344. doi: 10.1021/ez5002209

[176]

Liu S, Lu Y, Yang C, et al. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil[J].Environmental Science and Pollution Research, 2017, 24(30): 23815-23824. doi: 10.1007/s11356-017-9994-1

[177]

Lin L, Gao M, Qiu W, et al. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments[J]. Environmental Pollution, 2017, 231(1): 479-486.

[178]

Yu Z, Qiu W, Wang F, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar[J].Chemosphere, 2017, 168: 341-349. doi: 10.1016/j.chemosphere.2016.10.069

[179]

Sardans J, Penuelas J. Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues[J]. Environmental Monitoring & Assessment, 2006, 115(1-3): 473-498.

相似文献(共20条)

[1]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[2]

马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247.

[3]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[4]

王腾云, 周国华, 孙彬彬, 贺灵, 曾道明, 陈亚东, 叶荣. 福建沿海地区土壤-稻谷重金属含量关系与影响因素研究. 岩矿测试, 2016, 35(3): 295-301. doi: 10.15898/j.cnki.11-2131/td.2016.03.013

[5]

高孝礼, 汤志云, 张培新, 肖灵, 李方实. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷. 岩矿测试, 2004, (3): 173-178.

[6]

胡德新, 武素茹, 刘跃勇, 王虹, 王向东, 李权斌, 谷松海. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态. 岩矿测试, 2014, 33(3): 374-378.

[7]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[8]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[9]

况琴, 吴山, 黄庭, 吴代赦, 向京. 生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究. 岩矿测试, 2019, 38(6): 705-714. doi: 10.15898/j.cnki.11-2131/td.201901190014

[10]

王修中, 田春香, 陈艳玲, 王焰新, 王秀霞. 修饰电极测定土壤沉积物中各赋存状态砷. 岩矿测试, 2004, (3): 168-172.

[11]

郭小伟, 胡晓温. 氢化物发生一火焰分子发射光谱法测定地质样品中的砷. 岩矿测试, 1991, (1): 1-5.

[12]

徐国栋, 葛建华, 贾慧娴, 杜谷, 程江, 董俊. 水浴浸提-氢化物发生-原子荧光光谱法同时测定 地质样品中痕量砷和汞. 岩矿测试, 2010, 29(4): 391-394.

[13]

饶竹, 李梅. 铑作基体改进剂石墨炉原子吸收法测定海洋生物样品中的痕量砷. 岩矿测试, 1998, (1): 33-36.

[14]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

[15]

贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

[16]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[17]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[18]

徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80.

[19]

魏灵巧, 付胜波, 罗磊, 黄小华, 龙安应, 帅琴. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌. 岩矿测试, 2012, 31(6): 967-970.

[20]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

计量
  • PDF下载量(29)
  • 文章访问量(257)
  • HTML全文浏览量(54)
  • 被引次数(0)
目录

Figures And Tables

水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展

杨文蕾, 沈亚婷