【引用本文】 熊英, 王亚平, 韩张雄, 等. 全国土壤污染状况详查重金属元素可提取态提取试剂的选择[J]. 岩矿测试, 2022, 41(3): 384-393. doi: 10.15898/j.cnki.11-2131/td.202004130045
XIONG Ying, WANG Yaping, HAN Zhangxiong, et al. Screening of Extractable Reagents for Heavy Metal Elements in the Detailed Survey of Soil Pollution in China[J]. Rock and Mineral Analysis, 2022, 41(3): 384-393. doi: 10.15898/j.cnki.11-2131/td.202004130045

全国土壤污染状况详查重金属元素可提取态提取试剂的选择

1. 

国土资源部西安矿产资源监督检测中心,陕西 西安 710054

2. 

国家地质实验测试中心,北京 100037

收稿日期: 2021-04-13  修回日期: 2021-09-10  接受日期: 2022-03-06

基金项目: 中国地质调查局地质调查项目“全国土壤污染详查贵州福建等10省质量监控样制备及质量监督检查”(121201105000168509); 陕西省地矿集团有限公司地质科研专项基金项目“陕西省质量监控样品制备——全国土壤污染详查”(KY201904)

Screening of Extractable Reagents for Heavy Metal Elements in the Detailed Survey of Soil Pollution in China

1. 

Xi'an Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Xi'an 710054, China

2. 

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2021-04-13
Revised Date: 2021-09-10
Accepted Date: 2022-03-06

摘要:土壤重金属元素可提取态是衡量其生物有效性的重要指标,但其含量随着土壤酸碱性等环境条件的变化而改变,在提取土壤重金属元素可提取态时,不可避免地面临着提取剂与提取方法的选择。中国有关土壤重金属元素可提取态的标准分析方法或技术规范涉及的提取剂多达7种(pH=5.8盐酸溶液、0.1mol/L盐酸溶液、0.43±0.02mol/L硝酸溶液、0.11mol/L乙酸溶液、1mol/L硝酸铵溶液、0.005mol/L DTPA浸提剂、0.01mol/L氯化钙溶液),不同学者对不同提取剂有不同的研究结论,对于通用提取剂的系统研究未见报道。本文选择代表性农耕土壤样品,采用以上7种提取剂提取其中8种重金属元素(镉镍铜锌铬铅砷汞),电感耦合等离子体质谱法(ICP-MS)测定镉铬铜铅锌镍含量,原子荧光光谱法(AFS)测定砷和汞含量,对比了7种提取剂对各重金属元素的提取率,并研究了土壤酸碱性质对重金属元素提取率的影响。结果表明:①稀酸溶液对土壤重金属元素的提取率较高,且与土壤的酸碱性无关;② 1mol/L硝酸铵溶液虽然对镉的提取能力表征了镉在酸性土壤中的活性远大于碱性土壤的特点,但其对碱性土壤中铅的提取率大于镉;③DTPA提取剂对各重金属元素(尤其是铅、铜、锌)的提取率均显著高于0.01mol/L氯化钙溶液,且提取率随土壤酸碱性质的变化不显著;④0.01mol/L氯化钙溶液对镉的提取率最高,且与土壤酸碱性质密切相关,是土壤重金属元素可提取态较为理想的通用提取剂。

关键词: 土壤, 重金属元素可提取态, 提取剂, 电感耦合等离子体质谱法, 原子荧光光谱法, 生物有效性系数, 氯化钙提取法

要点

(1) 稀酸溶液对土壤重金属元素的提取率较高,且与土壤的酸碱性无关。

(2) 硝酸铵溶液虽然对镉的提取能力表征了镉在酸性土壤的活性远大于碱性土壤,但对碱性土壤中铅的提取率大于镉。

(3) DTPA提取剂对土壤重金属元素的提取率随土壤酸碱性质的变化不显著。

(4) 氯化钙溶液对土壤中重金属元素镉的提取率最高,且与土壤酸碱性质密切相关。

Screening of Extractable Reagents for Heavy Metal Elements in the Detailed Survey of Soil Pollution in China

ABSTRACT

BACKGROUND:

The extractable state of soil heavy metal elements is an important index to measure their bioavailability, but its content changes with soil acid-base properties and other environmental conditions. When determining which method to use for the extractable state of soil heavy metal elements, there are more than 7 kinds of extraction reagents involved in relevant standard methods or technical specifications. These include hydrochloric acid of pH=5.8, 0.1mol/L hydrochloric acid, 0.43±0.02mol/L nitric acid, 0.11mol/L acetic acid, 1mol/L ammonium nitrate solution, 0.005mol/L DTPA leaching agent, 0.01mol/L calcium chloride solution. Different scholars have different research conclusions on different extractants. There is no systematic research report on extractants suitable for different soil types.

OBJECTIVES:

To select and determine the general extractant suitable for the extractable state of heavy metal elements in soil with different acid-base properties.

METHODS:

Using typical farming soil samples as the research objective, 7 kinds of extracting agent were used to extract 8 heavy metals (Cd, Ni, Cu, Zn, Cr, Pb, As and Hg). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine Cd, Cr, Cu, Pb, Zn, Ni, whereas atomic fluorescence spectrometry (AFS) was used to determine As and Hg. The extraction rates of 7 kinds of extractants were compared, and the effects of soil acid and alkali properties on the extraction rate of heavy metal elements were studied.

RESULTS:

Dilute acid solution had a strong ability of leaching heavy metals from soil, and it was not related to the acidity and alkalinity of the soil. Although the extraction ability of 1mol/L ammonium nitrate solution for cadmium indicated that the activity of cadmium in acidic soil was much higher than that in alkaline soil, its extraction rate of lead in alkaline soil was higher than that of cadmium. The extraction rate of DTPA extractant for soil heavy metal elements was significantly higher than that of 0.01mol/L calcium chloride solution, especially for lead, copper and zinc. Moreover, the extraction rate of DTPA extractant for soil heavy metal elements did not change significantly with soil acid-base properties. 0.01mol/L calcium chloride solution had the highest extraction rate of cadmium in soil, which was closely related to the acid-base properties of soil.

CONCLUSIONS:

0.01mol/L calcium chloride solution is an ideal general extractant for the extractable state of soil heavy metal elements.

KEY WORDS: soil, extractable state of heavy metal elements, extractant, inductively coupled plasma-mass spectrometry, atomic fluorescence spectrometry, bioavailability coefficient, calcium chloride extraction

HIGHLIGHTS

(1) Dilute acid solution has the strong ability to leach heavy metals from soil, and is not related to the acidity and alkalinity of soil.

(2) Although the extraction ability of ammonium nitrate solution for cadmium indicates that the activity of cadmium in acidic soil is much higher than that in alkaline soil, the extraction rate of lead in alkaline soil is higher than that of cadmium.

(3) The extraction rate of heavy metals by DTPA extractant does not change significantly with the variations in acidity and alkalinity of soil.

(4) Calcium chloride solution has the highest extraction rate of the heavy metal element cadmium in soil. At the same time, it is closely related to soil acidity and alkalinity.

本文参考文献

[1]

陈飞霞, 魏世强. 土壤中有效态重金属的化学试剂提取法研究进展[J]. 干旱环境监测, 2006, 20(3): 153-158. doi: 10.3969/j.issn.1007-1504.2006.03.008

Chen F X, Wei S Q. Study of chemical extraction of heavy metals in soil[J].Arid Environmental Monitoring, 2006, 20(3): 153-158. doi: 10.3969/j.issn.1007-1504.2006.03.008

[2]

陈宗定, 许春雪, 刘贵磊, 等. 6种南方酸性土壤重金属元素氯化钙可提取态标准物质研制[J]. 冶金分析, 2021, 41(10): 12-22.

Chen Z D, Xu C X, Liu G L, et al. Development of six extractable certified reference materials of calcium chloride for analysis of heavy metals in southern acid soil[J]. Metallurgical Analysis, 2021, 41(10): 12-22.

[3]

高琳琳, 鮑广灵, 张宁, 等. 土壤重金属有效态纳入农田环境质量标准探讨[J]. 安徽农学通报, 2021, 27(10): 105-109. doi: 10.3969/j.issn.1007-7731.2021.10.041

Gao L L, Bao G L, Zhang N, et al. Study on the availability of heavy metals in soil as a risk assessment index for heavy metal pollution of soil and agricultural products[J].Anhui Agriculture Science Bulletin, 2021, 27(10): 105-109. doi: 10.3969/j.issn.1007-7731.2021.10.041

[4]

许建华编译. 日本《土壤污染对策》与土壤环境检测[J]. 环境检测管理与技术, 2006, 18(4): 49-51.

Xu J H (Translator). Japan "soil pollution counter-measures" and soil environmental testing[J]. Management and Technology of Environmental Testing, 2006, 18(4): 49-51.

[5]

刘玉荣, 党志, 尚爱安, 等. 几种萃取剂对土壤中重金属生物有效部分的萃取效果[J]. 土壤与环境, 2002, 11(3): 245-247. doi: 10.3969/j.issn.1674-5906.2002.03.006

Liu Y R, Dang Z, Shang A A, et al. Comparing several extractants for extracting bioavailable part of heavy metals in soils[J].Soil and Environmment, 2002, 11(3): 245-247. doi: 10.3969/j.issn.1674-5906.2002.03.006

[6]

贺静, 林玉锁, 刘鹏, 等. 不同提取剂提取酸性土壤有效态Cu和Cd的方法研究[J]. 环境监测管理技术, 2009, 21(5): 25-29.

He J, Lin Y S, Liu P, et al. The study of extraction method for available copper and cadmium in acidity soil with different extractants[J]. China Academic Journal Electronic Publishing House, 2009, 21(5): 25-29.

[7]

尹君, 刘文菊, 谢建治, 等. 土壤中有效态镉、汞浸提剂和浸提条件研究[J]. 河北农业大学学报, 2000, 23(2): 25-28. doi: 10.3969/j.issn.1000-1573.2000.02.007

Yin J, Liu W J, Xie J Z, et al. The study on extraction conditions and extractants of soil available Cd, Hg[J].Journal of Hebei Agricultural Universtiy, 2000, 23(2): 25-28. doi: 10.3969/j.issn.1000-1573.2000.02.007

[8]

李亮亮, 张大庚, 李天来, 等. 土壤有效态重金属提取剂选择的研究[J]. 土壤, 2008, 40(5): 819-823. doi: 10.3321/j.issn:0253-9829.2008.05.024

Li L L, Zhang D G, Li T L, et al. On relation between heavy metal available contents of soil determined by different extractants and of maize organs[J].Soils, 2008, 40(5): 819-823. doi: 10.3321/j.issn:0253-9829.2008.05.024

[9]

尚爱安, 党志, 梁重山, 等. 土壤/沉积物中微量重金属的化学萃取方法研究进展[J]. 农业环境保护, 2001, 20(4): 266-269.

Shang A A, Dang Z, Liang C S, et al. Procedings of chemical extraction of heavy metals in soils and sediments[J]. Agro-Environmental Protection, 2001, 20(4): 266-269.

[10]

周启星, 滕涌, 展思辉, 等. 土壤环境基准/标准研究需要解决的基础性问题[J]. 农业环境科学学报, 2014, 33(1): 1-14.

Zhou Q X, Teng Y, Zhan S H, et al. Fundamental problems to be solved in research on soil-environmental criteria/standards[J]. Journal of Agro-Environment Science, 2014, 33(1): 1-14.

[11]

Wang W S, Shan X Q, Wen B, et al. Relationship betw-een the extractable metals from soils and metals taken up by maize roots and shoots[J].Chemosphere, 2003, 53(5): 523-530. doi: 10.1016/S0045-6535(03)00518-6

[12]

李利梅, 成永霞, 袁远, 等. 土壤重金属有效态单级提取方法研究[J]. 安徽农业科学, 2020, 48(12): 13-15. doi: 10.3969/j.issn.0517-6611.2020.12.004

Li L M, Cheng Y X, Yuan Y, et al. Study on single-stage extraction method to heavy metals effective state in soil[J].Anhui Agricultural Sciences, 2020, 48(12): 13-15. doi: 10.3969/j.issn.0517-6611.2020.12.004

[13]

郝汉舟, 靳孟贵, 李瑞敏, 等. 耕地土壤铜、镉、锌形态及生物有效性研究[J]. 生态环境学报, 2010, 19(1): 92-96. doi: 10.3969/j.issn.1674-5906.2010.01.018

Hao H Z, Jin M G, Li R M, et al. Fractionations and bioavailability of Cu, Cd and Zn in cultivated[J].Ecology and Environmental Sciences, 2010, 19(1): 92-96. doi: 10.3969/j.issn.1674-5906.2010.01.018

[14]

郑绍建, 胡霭堂, 蒋廷惠, 等. 污染土壤中镉活性提取剂的选择[J]. 农业环境保护, 1995, 14(2): 49-53.

Zheng S J, Hu A T, Jiang Y H, et al. The selection of available cadmium extractants in contaminated soils[J]. Agro-Environmental Protection, 1995, 14(2): 49-53.

[15]

袁波, 傅瓦利, 蓝家程, 等. 菜地土壤铅、镉有效态与生物有效性研究[J]. 水土保持学报, 2011, 25(5): 130-134.

Yuan B, Fu W L, Lan J C, et al. Study on the available and bioavailability of lead and cadmium in soil of vegetable plantation[J]. Journal of Soil and Water Conservation, 2011, 25(5): 130-134.

[16]

利锋, 张学先, 戴睿志, 等. 重金属有效态与土壤环境质量标准制订[J]. 广东微量元素科学, 2008, 15(1): 7-10. doi: 10.3969/j.issn.1006-446X.2008.01.002

Li F, Zhang X X, Dai R Z, et al. The bioavailability of heavy metal and environmental quality standard for soil[J].Guangdong Trace Elements Science, 2008, 15(1): 7-10. doi: 10.3969/j.issn.1006-446X.2008.01.002

[17]

冯精兰, 胡鹏抟, 刘群, 等. 黄河中下游干流沉积物中重金属的赋存形态及其生态风险[J]. 环境化学, 2015, 34(1): 178-185.

Feng J L, Hu P T, Liu Q, et al. Chemical speciation and risk assessment of heavy metals in the sediments from the mainstream of middle and lower reaches of yellow river[J]. Environmental Chemistry, 2015, 34(1): 178-185.

[18]

张大元, 熊强. 土壤-植物系统中汞的生物有效性及其调控[J]. 安徽农业科学, 2009, 37(31): 15593-15594. doi: 10.3969/j.issn.0517-6611.2009.31.129

Zhang D Y, Xiong Q. Control and bioavailability of mercury in soil plant system[J].Anhui Agricultural Sciences, 2009, 37(31): 15593-15594. doi: 10.3969/j.issn.0517-6611.2009.31.129

[19]

杨少斌, 孙向阳, 张骏达, 等. 北京市五环内绿地土壤4种重金属的形态特征及其生物有效性[J]. 水土保持通报, 2018, 38(3): 79-85.

Yang S B, Sun X Y, Zhang J D, et al. Speciation and bioavailability of four heavy metals in greenbelt soil within 5th ring road of Beijing City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 79-85.

[20]

王建乐, 谢仕斌, 王冠, 等. 不同提取剂提取土壤中重金属能力的对比研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 55-62.

Wang J L, Xie S B, Wang G, et al. A comparative study of the capacity of different extractants to extract heavy metals in soil[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 55-62.

[21]

李永涛, 刘科学, 张池, 等. 广东大宝山地区重金属污染水田土壤的Cu、Pb、Zn、Cd全量与DTPA浸提态含量的相互关系研究[J]. 农业环境科学学报, 2004, 23(6): 1110-1114. doi: 10.3321/j.issn:1672-2043.2004.06.018

Li Y T, Liu K X, Zhang C, et al. Relationships between total and DTPA extractable contents of Cu, Pb, Zn, Cd in trace metal-contaminated paddy soils of Dabaoshan, Guangdong[J].Journal of Agro-Environment Science, 2004, 23(6): 1110-1114. doi: 10.3321/j.issn:1672-2043.2004.06.018

[22]

熊礼明, 鲁如坤. 土壤有效Cd浸提剂对Cd的浸提机制[J]. 环境化学, 1992, 11(3): 41-47.

Xiong L M, Lu R K. Extracting mechanism of chemical extractants for available cadmium in soils[J]. Environmental Chemistry, 1992, 11(3): 41-47.

[23]

颜世红, 吴春发, 胡友彪, 等. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 2013, 29(9): 99-104.

Yan S H, Wu C F, Hu Y B, et al. Optization of CaCl2 extraction of available cadmium in typical soils[J]. Chinese Agricultural Science Bulletin, 2013, 29(9): 99-104.

[24]

张海强, 赵钟兴, 王晓飞, 等. 不同提取剂对蔗田土壤中重金属有效态提取效率的研究[J]. 江西农业学报, 2015, 27(8): 96-98.

Zhang H Q, Zhao Z X, Wang X F, et al. Study on efficiency of different extractants in extraction of available heavy metals from soil of sugarcane field[J]. Acta Agriculturae Jiangxi, 2015, 27(8): 96-98.

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[5]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[6]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[7]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[8]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[9]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[10]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[11]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[12]

马生明, 朱立新, 汤丽玲, 唐世新. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估. 岩矿测试, 2020, 39(2): 225-234. doi: 10.15898/j.cnki.11-2131/td.201906060081

[13]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[14]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[15]

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

[16]

刘曙, 沈劼, 周海明, 诸秀芬, 朱志秀, 李晨, 兰超. 电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征. 岩矿测试, 2015, 34(4): 436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010

[17]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[18]

乔宁强, 薛志伟, 王刚峰, 罗丹. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷. 岩矿测试, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128

[19]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[20]

王昌宇, 李永利, 周文辉, 毛磊, 卢震, 胡浩远, 杜鑫, 边鹏, 高琪. 内蒙古包头市固阳县某铁矿区周边土壤多元素测定与健康风险评价. 岩矿测试, 2022, 41(3): 476-487. doi: 10.15898/j.cnki.11-2131/td.202109270129

计量
  • PDF下载量(6)
  • 文章访问量(56)
  • HTML全文浏览量(16)
  • 被引次数(0)
目录

Figures And Tables

全国土壤污染状况详查重金属元素可提取态提取试剂的选择

熊英, 王亚平, 韩张雄, 董亚妮, 蒋俊平