【引用本文】 王羽, 汪丽华, 王建强, 等. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(4): 566-577. doi: 10.15898/j.cnki.11-2131/td.202003110030
WANG Yu, WANG Li-hua, WANG Jian-qiang, et al. Investigation on Pore Structures of Yanchang Formation Shale Using Micro X-ray Microscopy[J]. Rock and Mineral Analysis, 2020, 39(4): 566-577. doi: 10.15898/j.cnki.11-2131/td.202003110030

利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征

1. 

中国科学院上海应用物理研究所微观界面物理与探测重点实验室, 上海 201800

2. 

中国科学院大学, 北京 100049

3. 

中国科学院上海高等研究院上海同步辐射装置, 上海 201204

4. 

中国科学院地质与地球物理研究所, 北京 100029

收稿日期: 2020-03-11  修回日期: 2020-04-12  接受日期: 2020-04-23

基金项目: 国家自然科学基金青年科学基金项目(Y915031031);中国科学院王宽诚率先人才计划“卢嘉锡国际团队”项目(GJTD-2018-10)

作者简介: 王羽, 硕士, 助理研究员, 从事显微成像技术在能源材料领域的研究与应用。E-mail:yuwang@sinap.ac.cn

Investigation on Pore Structures of Yanchang Formation Shale Using Micro X-ray Microscopy

1. 

Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. 

University of Chinese Academy of Sciences, Beijing 100049

3. 

Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

4. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Received Date: 2020-03-11
Revised Date: 2020-04-12
Accepted Date: 2020-04-23

摘要:页岩孔隙结构是决定储层储集与运移能力的关键,对完善我国陆相页岩气产能评估方法和压裂技术具有重要意义。本文选取鄂尔多斯盆地陆相延长组7段页岩,利用氩离子抛光-扫描电镜和微米X射线显微镜方法研究其孔隙结构特征与三维空间分布特征。扫描电镜结果表明,延长7段页岩中主要发育粒间孔(300~600nm)和微裂缝,是页岩气的主要储集空间。微裂缝多由黏土矿物沉淀形成,以平直状为主,易引发井壁坍塌等严重问题。有机孔发育较少,一般与有机黏土矿物共存,绝大部分有机质呈致密状。微米X射线显微镜测试进一步表明,长7段页岩在三维空间具有微米级纹层结构,其中有机质纹层厚10~20μm,揭示了延长组7段页岩层具有较强塑性,不利于水平压裂。该研究成果将为构建延长7段页岩气渗流模型、改进压裂技术提供重要数据支持。

关键词: 微米X射线显微镜, 氩离子抛光, 微纳孔隙, 三维结构, 纹层结构, 陆相延长组页岩

要点

(1) 利用同步辐射X射线显微镜方法表征了典型陆相页岩的纹层结构。

Investigation on Pore Structures of Yanchang Formation Shale Using Micro X-ray Microscopy

ABSTRACT

BACKGROUND:

Shale pore structure is the key to determine reservoir storage and migration capacity. It is of great significance for improving the productivity assessment of continental shale gas in China, and fracturing technology.

OBJECTIVES:

To investigate the pore structure and three dimensional distribution mode of the seventh member of Yanchang Formation shale and its controlling factors.

METHODS:

Ar-ion milling SEM and synchrotron micro X-ray microscopy were used to characterize the pore structures.

RESULTS:

The SEM results indicated that the interparticle pores (300-600nm) and micro-fractures were the main reservoir space of the seventh member of Yanchang Formation shale gas. Most of the micro-fractures were formed by the precipitation of clay minerals and presented as a flat shape, which likely caused collapse of borehole walls. Organic pores were less developed and mainly associated with organic clay minerals. The micro X-ray microscopy showed that the seventh member of Yanchang Formation shale had laminated structures at micro-scale with organic matter laminations of 10-20μm in thickness. The results indicated that the seventh member shale had strong plasticity, which was against horizontal fracturing.

CONCLUSIONS:

The results can provide significant data support for developing a percolation model and improving fracturing technology of shale gas.

KEY WORDS: micro X-ray microscopy, Ar-ion milling, micro-nano pores, three dimensional structures, laminated textures, Terrestrial Yanchang Formation shale

HIGHLIGHTS

(1) Synchrotron micro X-ray microscopy was adopted for characterization of the laminated structures of a typical terrestrial shale.

本文参考文献

[1]

周庆凡, 金之钧, 杨国丰, 等. 美国页岩油勘探开发现状与前景展望[J]. 石油与天然气地质, 2019, 40(3): 469-477.

Zhou Q F, Jin Z J, Yang G F, et al. Shale oil exploration and production in the U.S.:Status and outlook[J]. Oil & Gas Geology, 2019, 40(3): 469-477.

[2]

Tarnawski M. American experience with shale gas[J].Studies in Politics and Society, 2018, 16(1): 26-37.

[3]

Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China:Characteristics, challenges and prospects (Ⅱ)[J].Petroleum Exploration and Development, 2016, 43(2): 182-196. doi: 10.1016/S1876-3804(16)30022-2

[4]

吴辰泓, 高胜利, 高潮, 等. 鄂尔多斯盆地陆相页岩气特殊性及面临的挑战[J]. 非常规油气, 2017, 4(2): 64-72.

Wu C H, Gao S L, Gao C, et al. Characteristics and challenges of continental shale gas in Ordos Basin[J]. Unconventional Oil & Gas, 2017, 4(2): 64-72.

[5]

Yang C, Zhang J C, Tang X, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China[J].International Journal of Coal Geology, 2017, 171: 76-92. doi: 10.1016/j.coal.2016.12.001

[6]

Wang Y, Wang L H, Wang J Q, et al. Characterization of organic matter pores in typical marine and terrestrial shales, China[J].Journal of Natural Gas Science and Engineering, 2018, 49: 56-65. doi: 10.1016/j.jngse.2017.11.002

[7]

庞铭, 陈华兴, 唐洪明, 等. 海相页岩与陆相页岩微观孔隙结构差异——以川南龙马溪组、鄂尔多斯延长组为例[J]. 天然气勘探与开发, 2018, 41(2): 29-36.

Pang M, Chen H X, Tang H M, et al. Differences of micropore structure between marine shale and continental shale:Examples from Longmaxi Formation in Southern Sichuan Basin and Yanchang Formation in Ordos Basin[J]. Natural Gas Exploration and Development, 2018, 41(2): 29-36.

[8]

杨巍, 陈国俊, 吕成福, 等. 鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J]. 天然气地球科学, 2015, 26(3): 418-426.

Yang W, Chen G J, Lü C F, et al. Micropore characteristics of the organic-rich shale in the 7th Member of the Yanchang Formation in the southeast of Ordos Basin[J]. Natural Gas Geosciences, 2015, 26(3): 418-426.

[9]

王金月, 鞠玮, 申建, 等. 鄂尔多斯盆地定边地区延长组长71储层构造裂缝分布预测[J]. 地质与勘探, 2016, 52(5): 966-973.

Wang J Y, Ju W, Shen J, et al. Quantitative prediction of tectonic fracture distribution in the Chang 71 reservoirs of the Yanchang Formation in the Dingbian area, Ordos Basin[J]. Geology and Exploration, 2016, 52(5): 966-973.

[10]

Cao G H, Lin M, Jiang W B, et al. A 3D coupled model of organic matter and inorganic matrix for calculating the permeability of shale[J].Fuel, 2017, 204: 129-143. doi: 10.1016/j.fuel.2017.05.052

[11]

Liu S M, Zhang R, Karpyn Z, et al. Investigation of acce-ssible pore structure evolution under pressurization and adsorption for coal and shale using small-angle neutron scattering[J].Energy & Fuels, 2019, 33(2): 837-847.

[12]

Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types for matrix-related mud pores[J].AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

[13]

Wang Y, Wang L H, Wang J Q, et al. Investigating micro-structure of Longmaxi Shale in Shizhu area, Sichuan Basin, by optical microscopy, scanning electron microscopy and micro-computed tomography[J].Nuclear Science and Techniques, 2017, 28(11): 163. doi: 10.1007/s41365-017-0317-5

[14]

王跃鹏, 刘向君, 梁利喜, 等. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.

Wang Y P, Liu X J, Liang L X, et al. Anisotropy and energy evolution characteristics of Zhangjiatan continental shale of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(5): 149-160.

[15]

吴银辉, 周文, 陈文玲, 等. 鄂尔多斯盆地长7段泥页岩储层物性特征及控制因素研究[J]. 石油化工应用, 2017, 36(12): 78-83.

Wu Y H, Zhou W, Chen W L, et al. Physical properties and controlling factors of shale reservoir in Chang 7 Member of Ordos Basin[J]. Petrochemical Industry Application, 2017, 36(12): 78-83.

[16]

杨维磊, 李新宇, 徐志, 等. 鄂尔多斯盆地安塞地区长7段页岩油资源潜力评价[J]. 海洋地质前沿, 2019, 35(4): 48-56.

Yang W L, Li X Y, Xu Z, et al. Shale oil resources assessment for the member Chang 7 in Ansai area of Ordos Basin[J]. Marine Geology Letters, 2019, 35(4): 48-56.

[17]

Jiang Z, Zhang D X, Zhao J L, et al. Experimental investigation of the pore structure of triassic terrestrial shale in the Yanchang Formation, Ordos Basin, China[J].Journal of Natural Gas Science and Engineering, 2017, 46: 436-450. doi: 10.1016/j.jngse.2017.08.002

[18]

徐红卫, 李贤庆, 周宝刚, 等. 鄂尔多斯盆地延长探区陆相页岩气储层特征[J]. 煤田地质与勘探, 2017, 45(6): 46-53.

Xu H W, Li X Q, Zhou B G, et al. Characteristics of terrestrial shale gas reservoir in Yanchang exploration area of Ordos Basin[J]. Coal Geology & Exploration, 2017, 45(6): 46-53.

[19]

王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3): 278-285.

Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

[20]

Nie H K, Sun C X, Liu G X, et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, South China:Implications for shale gas enrichment[J].Marine and Petroleum Geology, 2019, 101: 243-251. doi: 10.1016/j.marpetgeo.2018.11.042

[21]

Ma L, Dowey P J, Rutter E, et al. A novel upscaling procedure for characterising heterogeneous shale porosity from nanometer-to millimetre-scale in 3D[J].Energy, 2019, 181: 1285-1297. doi: 10.1016/j.energy.2019.06.011

[22]

吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176.

Wu S T, Zhu R K, Cui J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176.

[23]

Wang Y, Pu J, Wang L, et al. Characterization of typical 3D pore networks of Jiulaodong Formation shale using nano-transmission X-ray microscopy[J].Fuel, 2016, 170: 84-91. doi: 10.1016/j.fuel.2015.11.086

[24]

王羽, 汪丽华, 王建强, 等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试, 2017, 36(6): 563-573.

Wang Y, Wang L H, Wang J Q, et al. Investigation of organic matter pore structures of shale in three dimensions using nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573.

[25]

王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235-243.

Wang Y, Wang L H, Wang J Q, et al. Three-dimension characterization of organic matter pore structure of Longmaxi Shale using focused ion beam-scanning electron microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235-243.

[26]

Misch D, Mendez-Martin F, Hawranek G, et al.SEM and FIB-SEM investigations on potential gas shales in the Dniepr-Donets Basin (Ukraine): Pore space evolution in organic matter during thermal maturation[C]//IOP Conference Series: Materials Science and Engineering, 2016, 109.

[27]

Jiang W B, Lin M, Yi Z X, et al. Parameter determination using 3D FIB-SEM images for development of effective model of shale gas flow in nanoscale pore clusters[J].Transport in Porous Media, 2017, 117(1): 5-25. doi: 10.1007/s11242-016-0817-5

[28]

靳平平, 欧成华, 马中高, 等. 蒙脱石与相关黏土矿物的演变规律及其对页岩气开发的影响[J]. 石油物探, 2018, 57(3): 344-355.

Jin P P, Ou C H, Ma Z G, et al. Evolution of montmorillonite and its related clay minerals and their effects on shale gas development[J]. Geophysical Prospecting for Petroleum, 2018, 57(3): 344-355.

[29]

Chen R C, Xu L, Du G, et al. The dynamic micro com-puted tomography at SSRF[J].Journal of Instrumentation, 2018, 13(5): C05006. doi: 10.1088/1748-0221/13/05/C05006

[30]

Chen R C, Dreossi D, Mancini L, et al. PITRE:Software for phase-sensitive X-ray image processing and tomography reconstruction[J].Journal of Synchrotron Radiation, 2012, 19(5): 836-845. doi: 10.1107/S0909049512029731

[31]

Kak A C, Slaney M, Wang G, et al. Principles of computerized tomographic imaging[J]. Medical Physics, 2002, 29(1): 105-108.

[32]

杨超, 张金川, 李婉君, 等. 辽河坳陷沙三、沙四段泥页岩微观孔隙特征及其成藏意义[J]. 石油与天然气地质, 2014, 35(2): 286-294.

Yang C, Zhang J C, Li W J, et al. Microscopic pore characteristics of Sha-3 and Sha-4 shale and their accumulation significance in Liaohe Depression[J]. Oil & Gas Geology, 2014, 35(2): 286-294.

[33]

解馨慧, 邓虎成, 张小菊, 等. 鄂尔多斯盆地陆相页岩孔隙演化特征——以长7油层组为例[J]. 东北石油大学学报, 2017, 41(4): 79-87.

Xie X H, Deng H C, Zhang X J, et al. Pore evolution characteristics of continental shale reservoirs in Ordos Basin, China:A case study of the Upper Triassic Yanchang 7 Formation[J]. Journal of Northeast Petroleum University, 2017, 41(4): 79-87.

[34]

宋健, 孟旺才, 邓南涛, 等. 鄂尔多斯盆地富-黄地区延长组储层特征及物性影响因素分析[J]. 西北地质, 2019, 52(1): 98-108.

Song J, Meng W C, Deng N T, et al. Features and influencing factors of Yanchang Formation reservoir in Fuxian-Huangling exploration area, Erdos Basin[J]. Northwestern Geology, 2019, 52(1): 98-108.

[35]

王志伟, 卢双舫, 王民, 等. 湖相、海相泥页岩孔隙分形特征对比[J]. 岩性油气藏, 2016, 28(1): 88-93.

Wang Z W, Lu S F, Wang M, et al. Fractal characteristics of lacustrine shale and marine shale[J]. Lithologic Reservoirs, 2016, 28(1): 88-93.

[36]

赵谦平, 张丽霞, 尹锦涛, 等. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.

Zhao Q P, Zhang L X, Yin J T, et al. Pore structure and physical characteristics of shale reservoir interbedded with silty layers:An example from Zhangjiatan lacustrine shale[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1018-1029.

[37]

李丽慧, 黄北秀, 李严严, 等. 考虑页岩纹层与裂缝网络的延长组页岩多尺度三维地质结构模型[J]. 工程地质学报, 2019, 27(1): 69-79.

Li L H, Huang B X, Li Y Y, et al. Multi-scale 3D modeling of Yanchang shale geological structure considering laminas and fracture networks[J]. Journal of Engineering Geology, 2019, 27(1): 69-79.

[38]

胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40(5): 947-956.

Hu W X, Yao S P, Lu X C, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40(5): 947-956.

相似文献(共18条)

[1]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞, 普洁. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征. 岩矿测试, 2015, 34(3): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

[2]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征. 岩矿测试, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

[3]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构. 岩矿测试, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

[4]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[5]

柴之芳, 周瑶琪. 用扫描隧道显微镜研究铁陨石和铁质宇宙尘球粒的亚微米和纳米结构. 岩矿测试, 1996, (1): 1-12.

[6]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[7]

李磊, 郝景宇, 肖继林, 李平平, 张正辰, 邹华耀. 微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征. 岩矿测试, 2020, 39(3): 362-372. doi: 10.15898/j.cnki.11-2131/td.202001150011

[8]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[9]

戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

[10]

荣庆丰, 赵雅云, 周志恒. 三维旋转式自动进样器的研制. 岩矿测试, 2004, (4): 291-294.

[11]

范磊, 邱家军, 宋鹏, 王纯阳, 罗利嘉, 周超, 张文华. 珊瑚化石的组成及显微结构分析. 岩矿测试, 2014, 33(3): 345-349.

[12]

安庆骧, 巢志瑜. 微X射线束荧光扫描成份分析研究:元素二维分布图. 岩矿测试, 1990, (3): 161-164.

[13]

王永亚, 干福熹. 广西陆川蛇纹石玉的岩相结构及成矿机理. 岩矿测试, 2012, 31(5): 788-793.

[14]

李回贵, 李化敏, 李长兴, 陈善乐. 应用扫描电镜-X射线能谱研究神东矿区砂岩中结构面的微观结构及元素特征. 岩矿测试, 2018, 37(1): 70-78. doi: 10.15898/j.cnki.11-2131/td.201705120080

[15]

蔡芃睿, 王春连, 刘成林, 杨飞, 徐海明, 谢腾骁, 余小灿, 孟令阳. 运用扫描电镜和压汞法研究江汉盆地古新统—白垩系砂岩储层孔喉结构及定量参数特征. 岩矿测试, 2017, 36(2): 146-155. doi: 10.15898/j.cnki.11-2131/td.2017.02.008

[16]

谭罗荣. X射线衍射定量相分析在确定绿鳞石矿物化学结构式中的应用. 岩矿测试, 1987, (2): 109-113.

[17]

张妮, 林春明. X射线衍射技术应用于宝石鉴定-合成及晶体结构研究进展. 岩矿测试, 2016, 35(3): 217-228. doi: 10.15898/j.cnki.11-2131/td.2016.03.002

[18]

张香荣, 谭秉和. 用X射线光谱法测定锰的X射线发射谱的细结构及锰的价态分析. 岩矿测试, 1994, (3): 169-174.

计量
  • PDF下载量(3)
  • 文章访问量(162)
  • HTML全文浏览量(32)
  • 被引次数(0)
目录

Figures And Tables

利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征

王羽, 汪丽华, 王建强, 王彦飞