【引用本文】 李磊, 郝景宇, 肖继林, 等. 微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征[J]. 岩矿测试, 2020, 39(3): 362-372. doi: 10.15898/j.cnki.11-2131/td.202001150011
LI Lei, HAO Jing-yu, XIAO Ji-lin, et al. Quantitative Characterization of Shale Micro-fracture in the Yuanba Area of the Sichuan Basin by Micro X-ray Tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 362-372. doi: 10.15898/j.cnki.11-2131/td.202001150011

微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征

1. 

中国石油大学(北京) 地球科学学院, 北京 102249

2. 

中国石油化工股份有限公司勘探分公司, 四川 成都 610041

收稿日期: 2020-01-15  修回日期: 2020-02-16  接受日期: 2020-04-16

基金项目: 国家科技重大专项“四川盆地侏罗系陆相页岩气目标评价”(2017ZX05036-004-004);国家科技重大专项“南方海相碳酸盐岩油气成藏差异性及油气分布规律”(2017ZX05005-003-003)

作者简介: 李磊, 硕士研究生, 研究方向为页岩气成藏机理与储层表征。E-mail:2808942625@qq.com

通信作者: 郝景宇, 硕士, 石油地质工程师, 主要从事页岩油气保存及成藏机理、含油气远景区及区带优选等研究。E-mail:83962253@qq.com

Quantitative Characterization of Shale Micro-fracture in the Yuanba Area of the Sichuan Basin by Micro X-ray Tomography

1. 

College of Geosciences, China University of Petroleum, Beijing 102249, China

2. 

Exploration Company of China Petroleum & Chemical Corporation, Chengdu 610041, China

Corresponding author: HAO Jing-yu, 83962253@qq.com

Received Date: 2020-01-15
Revised Date: 2020-02-16
Accepted Date: 2020-04-16

摘要:页岩中微裂缝的定量研究有利于认识储层类型与页岩气勘探潜力评价。微米级X射线断层成像(微米CT)技术是观测微裂缝最为直观的方法。本文以四川盆地元坝地区大安寨段页岩为研究对象,通过微米CT二维图像上微裂缝的识别与统计,定量计算了页岩样品的微裂缝孔隙度,并结合氦气法获得的页岩样品的总孔隙度,定量评价了微裂缝在页岩总孔隙空间的比例。结果表明:页岩中微裂缝主要为构造微裂缝,缝宽主要在0~12μm,三维空间内呈层状展布;页岩的氦气孔隙度为2.24%~4.60%(平均3.48%),其中微裂缝孔隙度为0.25%~1.06%(平均0.82%),在总孔隙空间中占比平均23.28%。与四川盆地焦石坝地区海相龙马溪组页岩(微裂缝孔隙度平均0.3%~1.3%,占总孔隙空间的6.1%~22.4%)中微裂缝的发育程度相当。元坝地区大安寨段页岩为孔隙型储层,发育丰富的纳米级基质孔隙,有利于页岩气的富集;同时微裂缝发育,可以沟通众多孤立的基质孔隙,有利于页岩气的高产。元坝地区大安寨段页岩为孔隙型储层同时微裂缝发育,表明具有页岩气高产稳产的孔隙条件和良好勘探潜力。

关键词: 微米级X射线断层成像, 微裂缝, 定量表征, 元坝地区, 大安寨段, 页岩

要点

(1) 通过微米CT技术定量研究了元坝地区大安寨段页岩微裂缝。

(2) 本区页岩中基质孔隙平均占比为76.72%,微裂缝平均占比为23.28%。

(3) 本区页岩为微裂缝发育的孔隙型储层利于页岩气高产稳产。

Quantitative Characterization of Shale Micro-fracture in the Yuanba Area of the Sichuan Basin by Micro X-ray Tomography

ABSTRACT

BACKGROUND:

Quantitative study of micro-fracture in shale is conducive to understanding reservoir type and evaluating the shale gas exploration potential. Micrometer X-ray tomography (micro-CT) is currently the most direct way to observe and measure micro-fracture.

OBJECTIVES:

To qualitatively and quantitatively characterize the micro-fracture in the shale of the Da'anzhai Member of the Yuanba area of the Sichuan Basin, and to evaluate the exploration potential of shale gas.

METHODS:

Micro-CT technology was used, through the identification and statistics of micro-fracture on the micrometer CT two-dimensional image. The micro-fracture porosity of shale samples was calculated quantitatively. Combined with the total porosity of shale samples obtained by porosimetry, the proportion of micro-fracture in the total pore space of shale was quantitatively evaluated.

RESULTS:

The micro-fracture in shale were mainly structural micro-fracture with the width of 0-12μm. They were layered in three-dimensional space. The total porosity of shale was 2.24%-4.60% (average 3.48%), in which the micro-fracture porosity was 0.25%-1.06% (average 0.82%), accounting for an average of 23.28% in the total pore space. The development degree of micro-fracture was similar to that of the marine Longmaxi Shale in the Jiaoshiba area of the Sichuan Basin with the average micro-fracture porosity of 0.3%-1.3% that accounted for 6.1%-22.4% of the total porosity. The shale in the Da'anzhai Member of the Yuanba area was a pore-type reservoir with abundant nano-scale matrix pores, which was conducive to the enrichment of shale gas. Meanwhile, the development of micro-fracture can communicate with many isolated matrix pores, which was conducive to high shale gas production.

CONCLUSIONS:

The shale in the Da'anzhai Member of the Yuanba area is a pore-type reservoir with widespread micro-fracture, indicating that the area has high and stable shale gas pore conditions and good exploration potential.

KEY WORDS: micro X-ray tomography, micro-fracture, quantitative characterization, Yuanba area, Da'anzhai Member, shale

HIGHLIGHTS

(1) Micro X-ray tomography technique was used to quantitatively study the shale micro-fracture in the Da'anzhai Member of the Yuanba area.

(2) The average porosity of matrix in shale in this area was 76.72% and the average micro-fracture was 23.28%.

(3) The shale in this area was a pore reservoir with micro-fracture, which was conducive to high and stable shale gas production.

本文参考文献

[1]

Hao F, Zou H Y, Lu Y C, et al. Mechanisms of shale gas storage:Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346.

[2]

戴方尧, 郝芳, 胡海燕, 等. 川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素[J]. 地球科学, 2017, 42(7): 1185-1194.

Dai F Y, Hao F, Hu H Y, et al. Occurrence mechanism and key controlling factors of Wufeng-Longmaxi shale gas[J]. Earth Science, 2017, 42(7): 1185-1194.

[3]

Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.

[4]

Nelson R A, Moldovanyi E P, Matcek C C, et al. Production characteristics of the fractured reservoirs of the La Paz field, Maracaibo Basin, Venezuela[J]. AAPG Bulletin, 2000, 84(11): 1791-1809.

[5]

Zhu H, Ju Y, Huang C, et al. Pore structure variations across structural deformation of Silurian Longmaxi shale:An example from the Chuandong thrust-fold belt[J]. Fuel, 2019, 241: 914-932.

[6]

Gale J F W, Reed R M, Holder J, et al. Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4): 603-622.

[7]

Rohrbaugh M B J, Dunne W M, Mauldon M, et al. Estimating fracture trace intensity, density, and mean length using circular scan lines and windows[J]. AAPG Bulletin, 2002, 86(12): 2089-2104.

[8]

Ortega O J, Marrett R A, Laubach S E, et al. A scale-independent approach to fracture intensity and average spacing measurement[J]. AAPG Bulletin, 2006, 90(2): 193-208.

[9]

Zeng L B, Su H, Tang X M, et al. Fractured tight sandstone oil and gas reservoirs:A new play type in the Dongpu Depression, Bohai Bay Basin, China[J].AAPG Bulletin, 2013, 97(3): 363-377.

[10]

Anders M H, Laubach S E, Scholz C H, et al. Microfractures:A review[J]. Journal of Structural Geology, 2014, 69: 377-394.

[11]

Ougier-Simonin A, Renard F, Boehm C, et al. Microfracturing and microporosity in shales[J]. Earth-Science Reviews, 2016, 162: 198-226.

[12]

李长海, 赵伦, 刘波, 等. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学, 2020, 31(3): 402-416.

Li C H, Zhao L, Liu B, et al. Research status, significance and development trend of microfractures[J]. Natural Gas Geoscience, 2020, 31(3): 402-416.

[13]

Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin, 2011, 95(12): 2017-2030.

[14]

Loucks R G, Reed R M. Natural microfractures in unconventional shale-oil and shale-gas systems:Real, hypothetical, or wrongly defined?[J]. GCAGS Journal, 2016, 5: 64-72.

[15]

王玉满, 董大忠, 杨桦, 等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学(地球科学), 2014, 44(6): 1348-1356.

Wang Y M, Dong D Z, Yang H, et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan, China[J]. Science China (Earth Sciences), 2014, 44(6): 1348-1356.

[16]

王玉满, 王宏坤, 张晨晨, 等. 四川盆地南部深层五峰组-龙马溪组裂缝孔隙评价[J]. 石油勘探与开发, 2017, 44(4): 531-539.

Wang Y M, Wang H K, Zhang C C, et al. Fracture pore evaluation of the Upper Ordovician Wufeng to Lower Silurian Longmaxi Formations in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 531-539.

[17]

臧士宾, 崔俊, 郑永仙, 等. 柴达木盆地南翼山油田新近系油砂山组低渗微裂缝储集层特征及成因分析[J]. 古地理学报, 2012, 14(1): 133-141.

Zang S B, Cui J, Zheng Y X, et al. Analysis of characteristics of low-permeable reservoir with micro-fractureand their origins of the Neogene Youshashan Formation in Nanyishan oilfield, Qaidam Basin[J]. Journal of Palaeogeography, 2012, 14(1): 133-141.

[18]

孙文峰, 李玮, 李卓, 等. 页岩储层微裂缝发育程度预测方法[J]. 科学技术与工程, 2019, 19(19): 118-123.

Sun W F, Li W, Li Z, et al. Prediction method of micro-fracture development degree of shale reservoir[J]. Science Technology and Engineering, 2019, 19(19): 118-123.

[19]

董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组-龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 763-774.

Dong D Z, Shi Z S, Sun S S, et al. Factors controlling microfractures in black shale:A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 763-774.

[20]

方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法——以沁水盆地伯方3号煤为例[J]. 煤田地质与勘探, 2018, 46(5): 167-174.

Fang H H, Sang S X, Liu S Q, et al. Study of digital petrophysical analysis method based on micro-focus X-ray tomography:A case study from No.3 coal seam of Bofang mining area in southern Qinshui Basin[J]. Coal Geology & Exploration, 2018, 46(5): 167-174.

[21]

王羽, 汪丽华, 王建强, 等. 利用纳米CT研究石柱龙马溪组页岩有机孔三维结构特征[J]. 岩矿测试, 2017, 36(6): 580-590.

Wang Y, Wang L H, Wang J Q, et al. Investigation of organic matter pore structures of shale in three dimensions of shale using nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 580-590.

[22]

黄家国, 许开明, 郭少斌, 等. 基于SEM、NMR和X-CT的页岩储层孔隙结构综合研究[J]. 现代地质, 2015, 29(1): 198-205.

Huang J G, Xu K M, Guo S B, et al. Comprehensive study on pore structures of shale reservoirs based on SEM, NMR and X-CT[J]. Geoscience, 2015, 29(1): 198-205.

[23]

徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.

Xu Z X, Guo S B. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science, 2014, 29(5): 624-631.

[24]

张平, 王登科, 于充, 等. 基于工业CT扫描的数字煤心构建过程及裂缝形态表征[J]. 河南理工大学学报(自然科学版), 2019, 38(6): 10-16.

Zhang P, Wang D K, Yu C, et al. Digital coal core construction process and crack characterization based on industrial CT scanning[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(6): 10-16.

[25]

屈乐.基于低渗透储层的三维数字岩心建模及应用[D].西安: 西北大学, 2014.

Qu L.3D Digital core modeling and application based on low permeability reservoir[D].Xi'an: Northwest University, 2014.

[26]

屈乐, 孙卫, 杜环虹, 等. 基于CT扫描的三维数字岩心孔隙结构表征方法及应用——以莫北油田116井区三工河组为例[J]. 现代地质, 2014, 28(1): 190-196.

Qu L, Sun W, Du H H, et al. Characterization technique of pore structure by 3D digital core based on CT scanning and its application:An example from Sangonghe Formation of 116 Well Field in Mobei Oilfield[J]. Geoscience, 2014, 28(1): 190-196.

[27]

黄振凯, 陈建平, 王义军, 等. 微米CT在烃源岩微观结构表征方面的应用[J]. 石油实验地质, 2016, 38(3): 418-422.

Huang Z K, Chen J P, Wang Y J, et al. Application of micro CT in the characterization of microstructure in source rocks[J]. Petroleum Geology & Experiment, 2016, 38(3): 418-422.

[28]

戚超, 王晓琦, 王威, 等. 页岩储层微观裂缝三维精细表征方法[J]. 石油学报, 2018, 39(10): 1175-1185.

Qi C, Wang X Q, Wang W, et al. Three-dimensional fine characterization method of micro-fractures in shale reservoirs[J]. Acta Petrolei Sinica, 2018, 39(10): 1175-1185.

[29]

陈彦君, 苏雪峰, 王钧剑, 等. 基于X射线微米CT扫描技术的煤岩孔裂隙多尺度精细表征——以沁水盆地南部马必东区块为例[J]. 油气地质与采收率, 2019, 26(5): 66-72.

Chen Y J, Su X F, Wang J J, et al. Multi-scale fine characterization of coal pore-fracture structure based on X-ray micro-CT scanning:A case study of Mabidong Block, southern Qinshui Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 66-72.

[30]

苟启洋, 徐尚, 郝芳, 等. 基于微米CT页岩微裂缝表征方法研究[J]. 地质学报, 2019, 93(9): 2372-2382.

Gou Q Y, Xu S, Hao F, et al. Study on characterization of micro-fracture of shale based on micro-CT[J]. Acta Geologica Sinica, 2019, 93(9): 2372-2382.

[31]

Gou Q Y, Xu S, Hao F, et al. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT:A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China[J]. Fuel, 2019, 253: 167-179.

[32]

邹才能, 杨智, 王红岩, 等. "进源找油":论四川盆地非常规陆相大型页岩油气田[J]. 地质学报, 2019, 93(7): 1551-1562.

Zou C N, Yang Z, Wang H Y, et al. "Exploring petroleum inside source kitchen":Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562.

[33]

邹才能, 杨智, 孙莎莎, 等. "进源找油":论四川盆地页岩油气[J]. 中国科学(地球科学), 2020, . doi: 10.1360/SSTe-2019-0246

Zou C N, Yang Z, Sun S S, et al. "Exploring petroleum inside source kitchen":Shale oil and gas in Sichuan Basin[J].Science China (Earth Sciences), 2020, . doi: 10.1360/SSTe-2019-0246

[34]

肖继林, 魏祥峰, 李海军, 等. 涪陵海相页岩气和元坝-兴隆场湖相页岩气富集条件差异性分析[J]. 天然气勘探与开发, 2018, 41(4): 8-17.

Xiao J L, Wei X F, Li H J, et al. Difference of accumulation conditions between Fuling marine shale gas and Yuanba-Xinglongchang lacustrine shale gas[J]. Natural Gas Exploration and Development, 2018, 41(4): 8-17.

[35]

魏祥峰, 黄静, 李宇平, 等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质, 2014, 41(3): 970-981.

Wei X F, Huang J, Li Y P, et al. The main factors controlling the enrichment and high production of Da'anzhai Member continental shale gas in Yuanba area[J]. Geology in China, 2014, 41(3): 970-981.

[36]

刘忠宝, 刘光祥, 胡宗全, 等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例[J]. 天然气工业, 2019, 39(12): 10-21.

Liu Z B, Liu G X, Hu Z Q, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration:A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21.

[37]

曹香妮, 姜振学, 朱德宇, 等. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793.

Cao X N, Jiang Z X, Zhu D Y, et al. Lithofacies types and reservoir characteristics of continental shales of Ziliujing Formation in northeastern Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1782-1793.

[38]

赵梦莹.川北地区下侏罗统大安寨段页岩气藏发育特征及富集规律研究[D].成都: 成都理工大学, 2014.

Zhao M Y.Research on shale gas reservoir development characteristics and enrichment regularity of Da'anzhai segment in Early Jurassic in northern Sichuan, China[D].Chengdu: Chengdu University of Technology, 2014.

[39]

杨巍, 薛莲花, 唐俊, 等. 页岩孔隙度测量实验方法分析与评价[J]. 沉积学报, 2015, 33(6): 1258-1264.

Yang W, Xue L H, Tang J, et al. Analysis and evaluation of different measuring methods for shaleporosity[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1258-1264.

[40]

王世谦. 页岩岩心样品分析数据对比及其影响因素分析[J]. 天然气工业, 2020, (1): 160-174.

Wang S Q. Correlation of shale core analysis results and its influencing factors[J]. Natural Gas Industry, 2020, (1): 160-174.

[41]

徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8.

Xu X H, Shen B J, Li Z M, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 1-8.

[42]

王幸蒙, 姜振学, 王世骋, 等. 泥页岩天然裂缝特征及其对页岩气成藏、开发的控制作用[J]. 科学技术与工程, 2018, 18(8): 34-42.

Wang X M, Jiang Z X, Wang S C, et al. Characteristics of natural fractures in shale and their control effect on shale gas accumulation and development[J]. Science Technology and Engineering, 2018, 18(8): 34-42.

[43]

汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1): 41-49.

Wang H, He Z L, Zhang Y G, et al. Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil and Gas Geology, 2019, 40(1): 41-49.

[44]

王玉满, 李新景, 董大忠, 等. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.

Wang Y M, Li X J, Dong D Z, et al. Development mechanism of fracture pores in marine shale and its geological significance[J]. Natural Gas Geoscience, 2016, 27(9): 1602-1610.

[45]

邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701.

Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China:Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701.

[46]

姜伟佳.川东北大安寨段陆相页岩孔隙结构特征及储集能力评价[D].北京: 中国石油大学(北京), 2017.

Jiang W J.The pore structure characteristics and reservoir capacity evaluation of continental shale of Da'anzhai Formation in the northeast of Sichuan Basin[D].Beijing: China University of Petroleum (Beijing), 2017.

[47]

马真乾, 王英滨, 于炳松, 等. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究[J]. 岩矿测试, 2018, 37(3): 244-255.

Ma Z Q, Wang Y B, Yu B S, et al. Study on analytical method for pore size distribution of the Lower Cambrian Niutitang Formation shale in southeastern Chongqing[J]. Rock and Mineral Analysis, 2018, 37(3): 244-255.

[48]

刘振庄, 白名岗, 杨玉茹, 等. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨[J]. 岩矿测试, 2020, 39(2): 199-207.

Liu Z Z, Bai M G, Yang Y R, et al. Discussion on the genesis and exploration potential of eifferent microscopic forms of organic matters in the Longmaxi Formation shale[J]. Rock and Mineral Analysis, 2020, 39(2): 199-207.

[49]

彭嫦姿, 彭俊, 陈燕辉, 等. 四川盆地元坝地区大安寨段页岩气"甜点"地震预测[J]. 天然气工业, 2014, 34(6): 42-47.

Peng C Z, Peng J, Chen Y H, et al. Seismic prediction of sweet spots in the Da'anzhai shale play, Yuanba area, the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 42-47.

相似文献(共20条)

[1]

张烨毓, 曹茜, 黄毅, 戚明辉, 李孝甫, 林丹. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力. 岩矿测试, 2020, 39(2): 188-198. doi: 10.15898/j.cnki.11-2131/td.201908210126

[2]

马真乾, 王英滨, 于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究. 岩矿测试, 2018, 37(3): 244-255. doi: 10.15898/j.cnki.11-2131/td.201801090003

[3]

周建辉, 白金峰. 熔融玻璃片制样-X射线荧光光谱测定页岩中主量元素. 岩矿测试, 2009, 28(2): 179-181.

[4]

张涛, 王小飞, 黎爽, 邓平晔. 压汞法测定页岩孔隙特征的影响因素分析. 岩矿测试, 2016, 35(2): 178-185. doi: 10.15898/j.cnki.11-2131/td.2016.02.010

[5]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[6]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[7]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征. 岩矿测试, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

[8]

葛明娜, 任收麦, 郭天旭, 王胜建, 周志. 中国南方下古生界海相页岩气“优质层段”识别方法与应用. 岩矿测试, 2020, 39(3): 350-361. doi: 10.15898/j.cnki.11-2131/td.201910210148

[9]

戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

[10]

代鸿章, 王登红, 刘丽君, 黄凡, 王成辉. 电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石. 岩矿测试, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

[11]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[12]

何廷鹏, 栾进华, 胡科, 李甜, 杨柳, 张跃磊. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景. 岩矿测试, 2018, 37(1): 87-95. doi: 10.15898/j.cnki.11-2131/td.201703230037

[13]

杨玉. 一级微商滴定终点直接计算法. 岩矿测试, 1989, (1): 65-66.

[14]

张媛, 吴淑琪, 张月琴, 张淑芬. 以苯类化合物表征固相微萃取纤维头的萃取特性. 岩矿测试, 2005, (2): 97-101.

[15]

安庆骧, 巢志瑜. 同步辐射X射线荧光微探针测定岩石中的元素分布. 岩矿测试, 1991, (2): 84-88.

[16]

巢志瑜, 安庆骧. 同步辐射X射线荧光微探针技术中地质标样的研究. 岩矿测试, 1992, (3): 252-255.

[17]

刘仕子. X射线衍射定量分相分析的策略架构. 岩矿测试, 2001, (2): 81-87.

[18]

张梅, 高孝礼, 黄光明, 封亚辉. 微量石棉的X射线衍射定量检测. 岩矿测试, 2010, 29(3): 309-312.

[19]

帅琴, 黄瑞成, 高强, 徐生瑞, 邱海鸥, 汤志勇. 页岩气实验测试技术现状与研究进展. 岩矿测试, 2012, 31(6): 931-938.

[20]

温利刚, 曾普胜, 詹秀春, 范晨子, 孙冬阳, 王广, 袁继海. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用. 岩矿测试, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.201708110129

计量
  • PDF下载量(8)
  • 文章访问量(213)
  • HTML全文浏览量(15)
  • 被引次数(0)
目录

Figures And Tables

微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征

李磊, 郝景宇, 肖继林, 李平平, 张正辰, 邹华耀