【引用本文】 曹茜, 王兴志, 戚明辉, 等. 页岩油地质评价实验测试技术研究进展[J]. 岩矿测试, 2020, 39(3): 337-349. doi: 10.15898/j.cnki.11-2131/td.202001060005
CAO Qian, WANG Xing-zhi, QI Ming-hui, et al. Research Progress on Experimental Technologies of Shale Oil Geological Evaluation[J]. Rock and Mineral Analysis, 2020, 39(3): 337-349. doi: 10.15898/j.cnki.11-2131/td.202001060005

页岩油地质评价实验测试技术研究进展

1. 

西南石油大学地球科学与技术学院, 四川 成都 610091

2. 

页岩气评价与开采四川省重点实验室, 四川 成都 610091

3. 

四川省科源工程技术测试中心, 四川 成都 610091

4. 

自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091

收稿日期: 2020-01-06  修回日期: 2020-02-06  接受日期: 2020-04-16

基金项目: 四川省科技厅科技支撑计划项目(2017GFW0175);四川省省院省校合作项目(2018JZ0003)

作者简介: 曹茜, 博士, 工程师, 主要从事非常规油气储层评价研究。E-mail:421664225@qq.com

通信作者: 王兴志, 教授, 博士生导师, 主要从事非常规油气地质研究。E-mail:wxzswpi@163.com

Research Progress on Experimental Technologies of Shale Oil Geological Evaluation

1. 

School of Earth Science and Technology, Southwest Petroleum University, Chengdu 610091, China

2. 

Sichuan Province Key Laboratory of Shale Gas Evaluation and Exploitation, Chengdu 610091, China

3. 

Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China

4. 

Technology Innovation Center of Shale Gas Exploration and Development in Complex Structural Areas, Ministry of National Resources, Chengdu 610091, China

Corresponding author: WANG Xing-zhi, wxzswpi@163.com

Received Date: 2020-01-06
Revised Date: 2020-02-06
Accepted Date: 2020-04-16

摘要:页岩油实验测试分析在页岩油地质评价中发挥着重要作用,目前页岩油储层矿物组成、有机质类型、丰度、物性以及岩石脆性等诸多方面的评价参数均需要通过实验测试来获取。本文评述了页岩油储层评价中烃源岩特性、储层储集性、含油性、可动性及可压性等各项实验测试技术研究现状和趋势,重点阐述了各项实验测试技术的目的及方法。页岩油烃源岩特性要综合有机质类型,丰度,成熟度,生物标志化合物,主量、微量和稀土元素等进行全面准确的评价;储集性与页岩矿物组成、孔隙、裂缝等储集空间分布特征密切相关,结合页岩含油饱和度、页岩油黏度、密度等评价页岩含油性和可动性;页岩可压性评价需综合考虑页岩的矿物组成、岩石力学特征参数等因素。同时探讨了页岩油储层地质评价实验测试技术未来发展方向,指出多种方法联合表征页岩油储层储集空间分布特征、不同赋存状态页岩油的分布特征、天然裂缝发育分析等是页岩油储层地质评价技术的关键攻关方向。

关键词: 页岩油, 烃源岩特性, 储层储集性, 含油性, 可压性

要点

(1) 总结了页岩油储层评价的相关实验测试技术。

(2) 阐述了烃源岩特性、储层储集性、含油性、可动性及可压性等测试方法及进展。

(3) 储集空间、不同赋存状态页岩油及天然裂缝的定量表征是页岩油储层地质评价的攻关方向。

Research Progress on Experimental Technologies of Shale Oil Geological Evaluation

ABSTRACT

BACKGROUND:

Experimental technologies played an important role in shale oil geological evaluation. The evaluation parameters such as mineral composition, organic matter type, organic matter content, properties and brittleness in shale oil reservoir were obtained by these technologies.

OBJECTIVES:

To find the appropriate experimental methods for shale oil geological evaluation.[LM]

METHODS:

The research status and trends of various experimental technologies for determination of parameters in shale oil reservoir evaluation, including characteristics of hydrocarbon source rocks, reservoir property, oiliness, movability and compressibility were reviewed. Purpose and method of the experimental testing technologies were focused.

RESULTS:

Evaluation of the characteristics of hydrocarbon source rock should combine the parameters of organic matter type, organic carbon contents, organic maturity, biomarkers, major elements, trace elements and rare earth elements. The mineral composition and distributions of pores and fractures should be considered in reservoir evaluation. And the oil saturation, viscosity, density of shale oil should also be integrated in the evaluation of the oiliness and movability of shale oil reservoir. Evaluation of shale compressibility required comprehensive consideration of shale mineral composition, and rock mechanical characteristics.

CONCLUSIONS:

The future development direction of shale oil reservoir geological evaluation experimental technology is discussed. It is pointed out that multiple methods to characterize the spatial distribution characteristics of shale oil reservoir, the distribution characteristics of shale oil in different occurrences, and the analysis of natural fracture development, are the key research direction of shale oil reservoir geological evaluation technology.

KEY WORDS: shale oil, characteristics of hydrocarbon source rocks, reservoir property, oiliness, compressibility

HIGHLIGHTS

(1) The relevant experimental technologies in shale oil reservoir evaluation were summarized.

(2) The methods and progresses of experimental technologies involved in characteristics of hydrocarbon source rocks, reservoir property, oiliness, movability and compressibility were illustrated.

(3) Quantitative characterization of reservoir space, shale oil and natural fractures in different occurrences was the key to geological evaluation of shale oil reservoir.

本文参考文献

[1]

邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.

Zou C N, Yang Z, Cui J W, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.

[2] International Energy Agency . World oil market report 2017[M] . Paris: OECD/IEA, 2017
[3] International Energy Agency . World oil market report 2018[M] . Paris: OECD/IEA, 2018
[4]

Feng C, Yang H, Pu R, et al. Lithology and oil-bearing properties of tight sandstone reservoirs:Chang 7 member of Upper Triassic Yanchang Formation, southwestern Ordos Basin, China[J].Geosciences Journal, 2017, 21(2): 201-211.

[5]

王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43(6): 850-862.

Wang H J, Ma F, Tong X G, et al. Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration & Development, 2016, 43(6): 850-862.

[6]

张善文, 王永诗, 张林晔, 等. 济阳坳陷渤南洼陷页岩油气形成条件研究[J]. 中国工程科学, 2012, 14(6): 49-55, 63.

Zhang S W, Wang Y S, Zhang L Y, et al. Formation conditions of shale oil and gas in Bonan sub-sag, Jiyang Depression[J]. Chinese Science and Engineering, 2012, 14(6): 49-55, 63.

[7]

李士超, 张金友, 公繁浩, 等. 松辽盆地北部上白垩统青山口组泥岩特征及页岩油有利区优选[J]. 地质通报, 2017, 36(4): 654-663.

Li S C, Zhang J Y, Gong F H, et al. The characteristics of mudstones of Upper Cretaceous Qingshankou Formation and favorable area optimization of shale oil in the north of Songliao Basin[J]. Geological Bulletin of China, 2017, 36(4): 654-663.

[8]

Song Y, Li Z, Jiang L, et al. The concept and the accumulation characteristics of unconventional hydrocarbon resources[J]. Petroleum Science, 2015, 12(3): 563-572.

[9]

Suárez-Ruiz I, Juliao T, Suárez-García F, et al. Porosity development and the influence of pore size on the CH4 adsorption capacity of a shale oil reservoir (Upper Cretaceous) from Colombia.Role of solid bitumen[[J]. International Journal of Coal Geology, 2016, 159: 1-17.

[10]

张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331.

Zhang J C, Lin L M, Li Y X, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331.

[11]

陈桂华, 肖钢, 徐强, 等. 页岩油气地质评价方法和流程[J]. 天然气工业, 2012, 32(12): 1-5.

Chen G H, Xiao G, Xu Q, et al. A method and workflow for shale oil and gas geological evaluation[J]. Natural Gas Industry, 2012, 32(12): 1-5.

[12]

卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322.

Lu S F, Xue H T, Wang M, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322.

[13]

Zou C N, Yang Z, He D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 604-618.

[14]

Chalmers G R L, Bustin R M. Geological evaluation of Halfway-Doig-Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia[J]. Marine and Petroleum Geology, 2012, 38(1): 53-72.

[15]

Khraisha Y H, Shabib I M. Thermal analysis of shale oil using thermogravimetry and differential scanning calorimetry[J]. Energy Conversion and Management, 2002, 43(2): 229-239.

[16]

黄文彪, 邓守伟, 卢双舫, 等. 泥页岩有机非均质性评价及其在页岩油资源评价中的应用——以宋辽盆地南部青山口组为例[J]. 石油与天然气地质, 2014, 35(5): 704-711.

Huang W B, Deng S W, Lu S F, et al. Shale organic heterogeneity evaluation method and its application to shale oil resource evaluation-A case study from Qingshankou Formation, southern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(5): 704-711.

[17]

涂建琪, 王淑芝, 费轩冬, 等. 干酪根有机质类型划分的若干问题的探讨[J]. 石油实验地质, 1998, (2): 187-191, 186.

Tu J Q, Wang S Z, Fei X D, et al. Discussion on certain problems to the division of organic matter types in kerogen[J]. Experimental Petroleum Geology, 1998, (2): 187-191, 186.

[18]

Li C, Kong L. Nanoscale pore structure characterization of tight oil formation:A case study of the Bakken Formation[J]. Energy & Fuels, 2019, 33(7): 6008-6019.

[19]

赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.

Zhao W Z, Hu S Y, Hou L H, et al. Types and resource potential of continental shale oil in China and its houndary with tigh oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.

[20]

胡思义,黄第藩. 中国陆相石油地质理论基础[M] . 北京: 石油工业出版社, 1991

Hu S Y,Huang D F. The theoretical basis of China's terrestrial petroleum geology[M] . Beijing: Petroleum Industry Press (Beijing), 1991
[21]

姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196.

Jiang Z X, Zhang W Z, Liang C, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196.

[22]

Brian, Cardott. Thermal maturity of Woodford shale gas and oil plays, Oklahoma[J]. International Journal of Coal Geology, 2012, 109: 109-119.

[23]

卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256.

Lu S F, Huang W B, Chen F W, et al. Classification and evaluation criteria of shale oil and gas resources:Discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256.

[24]

余志远, 章新文, 谭静娟, 等. 泌阳坳陷页岩油赋存特征及可动性研究[J]. 石油地质与工程, 2019, 33(1): 42-46.

Yu Z Y, Zhang X W, Tan J J, et al. Occurrence characteristics and mobility of shale oil in Biyang Sag[J]. Petroleum Geology and Engineering, 2019, 33(1): 42-46.

[25]

蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 125-136.

Jiang Q G, Li M W, Qian M H, et al. Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil & Gas Geology, 2019, 40(3): 125-136.

[26]

柳波, 何佳, 吕延防, 等. 页岩油资源评价指标与方法——以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报(自然科学版), 2014, 45(11): 3846-3852.

Liu B, He J, Lü Y F, et al. Parameters and method for shale oil assessment:Taking Qinshankou Formation shale oil of northern Songliao Basin[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 3846-3852.

[27]

彭兴芳, 李周波. 生物标志化合物在石油地质中的应用[J]. 资源环境与工程, 2006, 20(3): 73-77.

Peng X F, Li Z B. The application of biomarker in the research of petroleum geology[J]. Resources Environment & Engineering, 2006, 20(3): 73-77.

[28]

Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111: 111-129.

[29]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[30]

明承栋, 侯读杰, 赵省民, 等. 内蒙古东部索伦地区中二叠世哲斯组古环境与海平面相对升降的地球化学记录[J]. 地质学报, 2015, 89(8): 1484-1494.

Ming C D, Hou D J, Zhao S M, et al. The geochemistry records of Paleoenvironment and sea-level relative movement of Middle Permian Zhesi Formation in eastern Inner Mongolia[J]. Acta Geologica Sinica, 2015, 89(8): 1484-1494.

[31]

朱光有, 金强, 张水昌, 等. 东营坳陷湖相烃源岩TOC与Sr的正相关性及原因[J]. 地学前缘, 2005, 12(4): 551-560.

Zhu G Y, Jin Q, Zhang S C, et al. Positive correlation between contents of TOC and Sr in source rocks of the Palaeogene Shahejie Formation in Dongying Sag, eastern China[J]. Earth Science Frontiers, 2005, 12(4): 551-560.

[32]

金强, 田海芹, 戴俊生, 等. 微量元素组成在固体沥青-源岩对比中的应用[J]. 石油实验地质, 2001, 23(3): 285-290.

Jin Q, Tian H Q, Dai J S, et al. Application of microelement composition to the coorelation of solid bitumen with source rocks[J]. Petroleum Geology & Experiment, 2001, 23(3): 285-290.

[33]

帅琴, 黄瑞成, 高强, 等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931-938.

Shuai Q, Huang R C, Gao Q, et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931-938.

[34]

徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8.

Xu X H, Shen B J, Li Z M, et al. Status and prospect of experimental technologies of geological evaluation of shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 1-8.

[35]

姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039.

Jiang Z X, Liang C, Wu J, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Actapetrolei Sinica, 2013, 34(6): 1031-1039.

[36]

张廷山, 杨洋, 龚其森, 等. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报, 2014, 88(9): 1728-1740.

Zhang T S, Yang Y, Gong Q S, et al. Characteristics and mechanisms of the micro-pores in the Early Palaeozoic marine shale, southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(9): 1728-1740.

[37]

刘毅.渤海湾盆地济阳坳陷沙河街组页岩油储层特征研究[D].成都: 成都理工大学, 2018.

Liu Y.Study on shale oil reservoir characteristics of Shahejie Formation in Jiyang Depression, Bohai Bay Basin[D].Chengdu: Chengdu University of Technology, 2018.

[38]

王羽, 汪丽华, 王建强, 等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试, 2017, 36(6): 563-573.

Wang Y, Wang L H, Wang J Q, et al. Investigation of organic matter pore structures of shale in three dimensions of shale using nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573.

[39]

庞河清, 曾焱, 刘成川, 等. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J]. 岩矿测试, 2017, 36(1): 66-74.

Pang H Q, Zeng Y, Liu C C, et al. Investigation of pore structure of a argillaceous rocks reservoir in the 5th Member of Xujiahe Formation in western Sichuan, using NAM, NMR and AIP-FESEM[J]. Rock and Mineral Analysis, 2017, 36(1): 66-74.

[40]

孙中良, 王芙蓉, 侯宇光, 等. 潜江坳陷潜江组页岩中可溶有机质赋存空间表征及影响因素分析[J]. 地质科技情报, 2019, 38(6): 81-90.

Sun Z L, Wang F R, Hou Y G, et al. Spatial characterization and influencing factors analysis of soluble organic matter in shale of Qianjiang Formation in Qianjiang Depression[J].Geological Science and Technology Information, 2019, 38(6): 81-90.

[41]

曾维主, 周国议, 宋之光, 等. 松辽盆地青山口组页岩孔隙结构及其对页岩油富集的影响[J]. 地球科学, 2019, 48(6): 632-643.

Zeng W Z, Zhou G Y, Song Z G, et al. Influence of pore structure on the shale oil accumulation of the Qingshankou Formation in the Songliao Basin[J]. Geochimica, 2019, 48(6): 632-643.

[42]

王璟明, 肖佃师, 卢双舫, 等. 吉木萨尔坳陷芦草沟组页岩储层物性分级评价[J]. 中国矿业大学学报, 2020, 49(1): 172-183.

Wang J M, Xiao D S, Lu S F, et al. Classification evaluation of shale oil reservoir physical properties in Lucaogou Formation, Jimsar Sag[J].Journal of China University of Mining & Technology, 2020, 49(1): 172-183.

[43]

李新, 刘鹏, 罗燕颖, 等. 页岩气储层岩心孔隙度测量影响因素分析[J]. 地球物理学进展, 2015, 30(5): 2181-2187.

Li X, Liu P, Luo Y Y, et al. Analysis of influencing factors on porosity measurement of shale gas reservoir core[J]. Progress in Geophysics, 2015, 30(5): 2181-2187.

[44]

Topór T, Derkowski A, Kuila U, et al. Dual liquid porosimetry:A porosity measurement technique for oil and gas bearing shales[J]. Fuel, 2016, 183: 537-549.

[45]

Liu C L, Wang Z L, Guo Z Q, et al. Enrichment and distribution of shale oil in the Cretaceous Qingshankou Formation, Songliao Basin, northeast China[J]. Marine and Petroleum Geology, 2017, 86: 751-770.

[46]

马晓潇, 黎茂稳, 蒋启贵, 等. 陆相页岩含油性的化学动力学定量评价方法[J]. 油气地质与采收率, 2019, 26(1): 141-156.

Ma X X, Li M W, Jiang Q G, et al. Chemical kinetic model for quantitative evaluation on oil-bearing property of lacustrine shale[J]. Ptroleum Geology and Recovery Efficiency, 2019, 26(1): 141-156.

[47]

冯国奇, 李吉君, 刘洁文, 等. 泌阳坳陷页岩油富集及可动性探讨[J]. 石油与天然气地质, 2019, 40(6): 1236-1246.

Feng G Q, Li J J, Liu J W, et al. Discussion on the enrichment and mobility of continental shale oil in Biyang Depression[J]. Oil & Gas Geology, 2019, 40(6): 1236-1246.

[48]

邢济麟. 松辽盆地南部青一段页岩油甜点评价[J]. 矿产勘查, 2019, 10(9): 2286-2290.

Xing J L. Dessert evaluation of shale oil in Qingyi Formation of southern Songliao Basin[J]. Mineral Exploration, 2019, 10(9): 2286-2290.

[49]

龙梅, 裴世桥. 超临界流体萃取技术在地质样品分析中的应用[J]. 岩矿测试, 2000, 19(4): 286-290.

Long M, Pei S Q. Application of the analytical-scale supercritical fluid extraction techniques in the geological sample analysis[J]. Rock and Mineral Analysis, 2000, 19(4): 286-290.

[50]

包友书, 张林晔, 张金功, 等. 渤海湾盆地东营坳陷古近系页岩油可动性影响因素[J]. 石油与天然气地质, 2016, 37(3): 408-414.

Bao Y S, Zhang L Y, Zhang J G, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 408-414.

[51]

何梦卿, 吴珂. 基于核磁共振驱替技术的页岩含油性评价[J]. 石油化工应用, 2017, 36(11): 89-92.

He M Q, Wu K. Evaluation of shale oil based on NMR displacement technology[J]. Petrochemical Industry Application, 2017, 36(11): 89-92.

[52]

李庆辉, 陈勉, 金衍, 等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术, 2012, 40(4): 17-22.

Li Q H, Chen M, Jin Y, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17-22.

[53]

Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91(4): 475-499.

[54]

Cao Q, Zhou W, Deng H C, et al. Classification and con-trolling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results[J].Journal of Natural Gas Science and Engineering, 2015, 27(3): 1381-1388.

[55]

张晨晨, 王玉满, 董大忠, 等. 四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测[J]. 天然气工业, 2016, 36(9): 51-60.

Zhang C C, Wang Y M, Dong D Z, et al. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 51-60.

[56]

夏遵义, 马海洋, 房堃, 等. 渤海湾盆地沾化坳陷陆相页岩储层岩石力学特征及可压裂性研究[J]. 石油实验地质, 2019, 41(1): 134-141.

Xia Z Y, Ma H Y, Fang K, et al. Rock mechanical properties and fracability of continental shale in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(1): 134-141.

相似文献(共17条)

[1]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[2]

陈 勇, 葛云锦. 实验研究碳酸盐岩储层烃类包裹体捕获模式. 岩矿测试, 2010, 29(3): 217-220.

[3]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[4]

许锦, 席斌斌, 蒋宏. 岩盐中合成烃包裹体与母油的地球化学特征及其在油源对比中的意义. 岩矿测试, 2016, 35(4): 389-396. doi: 10.15898/j.cnki.11-2131/td.2016.04.009

[5]

王瑞, 李季, 蒋启贵, 张彩明. 气相色谱法定量测定烃源岩中轻烃的含量. 岩矿测试, 2008, 27(5): 333-336.

[6]

王勤, 钱门辉, 蒋启贵, 仰云峰, 腾格尔. 中国南方海相烃源岩中笔石生烃能力研究. 岩矿测试, 2017, 36(3): 258-264. doi: 10.15898/j.cnki.11-2131/td.201611170173

[7]

陈炳才, 卢宇. 江西阳储岭中酸性杂岩体岩石熔融实验及其成因的探讨. 岩矿测试, 1984, (1): 1-8.

[8]

高辉, 孙卫, 费二战, 齐银, 李达. 特低-超低渗透砂岩储层微观孔喉特征与物性差异. 岩矿测试, 2011, 30(2): 244-250.

[9]

毛毳, 陈勇, 周瑶琪, 王有智, 周俊辉. 储层烃类包裹体类型识别与PVT模拟方法. 岩矿测试, 2010, 29(6): 648-652.

[10]

李景喜, 李俊飞, 高丽洁, 郑立, 王小如. 原油中铅同位素的ICP-MS测定及其在油源鉴别中的应用. 岩矿测试, 2013, 32(4): 621-626.

[11]

张家菁, 赵正, 陈振宇, 陈郑辉, 侯可军. 赣南—粤北油山—猫头寨岩体的成岩时代及其地质意义. 岩矿测试, 2012, 31(3): 554-558.

[12]

蔡芃睿, 王春连, 刘成林, 杨飞, 徐海明, 谢腾骁, 余小灿, 孟令阳. 运用扫描电镜和压汞法研究江汉盆地古新统—白垩系砂岩储层孔喉结构及定量参数特征. 岩矿测试, 2017, 36(2): 146-155. doi: 10.15898/j.cnki.11-2131/td.2017.02.008

[13]

曾乐, 陈郑辉, 孙丰月, 王家欢, 孙颖超, 陈振宇. 赣南珠兰埠岩体锆石U-Pb年代学研究及其含矿性评价. 岩矿测试, 2016, 35(2): 199-207. doi: 10.15898/j.cnki.11-2131/td.2016.02.013

[14]

田泽瑾, 陈振宇, 王登红, 陈郑辉, 黄凡, 赵正, 侯可军. 赣南桃山复式岩体的锆石U-Pb年代学及其产铀性探讨. 岩矿测试, 2014, 33(1): 133-141.

[15]

阎月华, 翟明国, 王凯怡. 冀东曹庄群早太古变基性火山质斜长角闪岩的地球化学特征. 岩矿测试, 1985, (1): 16-21.

[16]

于扬, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 赣南燕山期水头岩体的锆石铀-铅年代学研究及其含矿性评价. 岩矿测试, 2012, 31(4): 736-744.

[17]

赵芝, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 赣南加里东期阳埠(垇子下)岩体的锆石年龄、构造背景及含矿性评价. 岩矿测试, 2012, 31(3): 530-535.

计量
  • PDF下载量(12)
  • 文章访问量(190)
  • HTML全文浏览量(20)
  • 被引次数(0)
目录

Figures And Tables

页岩油地质评价实验测试技术研究进展

曹茜, 王兴志, 戚明辉, 黄毅, 张烨毓, 刘虎, 王代富