【引用本文】 葛明娜, 任收麦, 郭天旭, 等. 中国南方下古生界海相页岩气“优质层段”识别方法与应用[J]. 岩矿测试, 2020, 39(3): 350-361. doi: 10.15898/j.cnki.11-2131/td.201910210148
GE Ming-na, REN Shou-mai, GUO Tian-xu, et al. Identification Method of Marine Shale Gas 'High-Quality Layer' in the Lower Paleozoic Area, Southern China and Its Application[J]. Rock and Mineral Analysis, 2020, 39(3): 350-361. doi: 10.15898/j.cnki.11-2131/td.201910210148

中国南方下古生界海相页岩气“优质层段”识别方法与应用

1. 

中国地质调查局油气资源调查中心, 北京 100083

2. 

中国地质调查局发展研究中心, 北京 100037

收稿日期: 2019-10-21  修回日期: 2020-01-16  接受日期: 2020-04-20

基金项目: 国家科技重大专项(2016ZX05034-002);中国地质调查局地质调查项目(2120115006401,DD20160181)

作者简介: 葛明娜, 硕士, 工程师, 主要从事非常规油气地质研究。E-mail:610144368@qq.com

通信作者: 任收麦, 博士, 研究员, 主要从事构造地质和页岩气地质研究。E-mail:realshaw@vip.sina.com

Identification Method of Marine Shale Gas 'High-Quality Layer' in the Lower Paleozoic Area, Southern China and Its Application

1. 

Oil & Gas Survey Center, China Geological Survey, Beijing 100083, China

2. 

Development Research Center of China Geological Survey, Beijing 100037, China

Corresponding author: REN Shou-mai, realshaw@vip.sina.com

Received Date: 2019-10-21
Revised Date: 2020-01-16
Accepted Date: 2020-04-20

摘要:“优质层段”是页岩气勘探开发的重点和热点,国内外学者在相关领域作了诸多探索并取得重要进展,但在选区参数阈值、定性-定量系统分级评价及模板建立方面有待进一步完善。为掌握中国南方下古生界海相页岩气发育的“优质层段”,本文以上奥陶统五峰组—下志留统龙马溪组和寒武系牛蹄塘组为研究对象,对页岩气富集高产“优质层段”的识别要素进行分析,优选出中国南方下古生界海相具有页岩气商业勘探价值的区域。通过资料调研和数据分析,①遴选出页岩气“优质层段”三定性(沉积相、构造保存、岩性组合),八定量(含气量、压力系数、有机碳含量、有机质成熟度、孔隙度、脆性、有效厚度、埋深)识别参数;②按照“定性参数圈定有利区-定量参数识别优质层段”叠加递进判别原则,分析了参数获取方法和阈值,建立了中国南方海相五峰—龙马溪组和牛蹄塘组页岩气“优质层段”定量识别模板;③将该方法应用于贵州正安—务川地区,优选出7个页岩气有利区,识别出1个页岩气“优质层段”(安场向斜五峰—龙马溪组),并得到后期钻探成功验证。该方法对中国南方海相页岩气“优质层段”识别有一定的参考意义。

关键词: 页岩气, 优质层段, 定性-定量参数, 五峰—龙马溪组, 牛蹄塘组

要点

(1) 沉积相、构造保存及岩性组合是识别中国南方下古生界海相页岩气“优质层段”的主要定性参数。

(2) 含气量、压力系数、TOC、Ro、孔隙度、脆性矿物、有效页岩厚度及埋深是识别中国南方下古生界海相页岩气“优质层段”的主要定量参数。

(3) 含气量和压力系数在中国南方下古生界海相页岩气“优质层段”识别中是关键参数。

Identification Method of Marine Shale Gas 'High-Quality Layer' in the Lower Paleozoic Area, Southern China and Its Application

ABSTRACT

BACKGROUND:

'High-quality layer' is the focus and hotspot of shale gas exploration and development. Many explorations and important developments have been studied by researchers at home and abroad. However, the threshold of selection parameters, qualitative-quantitative system classification evaluation and template establishment need to be optimized.

OBJECTIVES:

To identify the 'high-quality layer' and optimize areas of marine shale gas with the commercial value in the Lower Paleozoic area of southern China.

METHODS:

The Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation and Cambrian Niutitang Formation were the research objects. The identification factors of shale gas enrichment and high-yield 'high quality layer', and the shale gas area with commercial exploration value in the Lower Paleozoic marine facies in southern China were analyzed.

RESULTS:

Three qualitative parameters including sedimentary facies, tectonic preservation, lithologic combination, and eight quantitative parameters including gas content, pressure coefficient, organic carbon content, organic matter maturity, porosity, brittleness, effective thickness, buried depth were optimized. A discriminating principle of qualitative parameters to delineate favorable areas, and quantitative parameters to identify the 'high-quality layer' was proposed. On the basis of this, the parameter acquisition methods and thresholds were analyzed. A 'high-quality layer' quantitative identification template for marine shale gas of the Wufeng-Longmaxi Formation and the Niutitang Formation was established in southern China. This method was applied to the Zheng'an-Wuchuan area of Guizhou Province. Seven favorable shale gas areas and one 'high-quality layer' of shale gas (the Wufeng-Longmaxi Formation of Anchang syncline) were identified, which successfully verified by later drilling.

CONCLUSIONS:

The proposed method has certain reference significance for the identification of 'high-quality layer' of marine shale gas in southern China.

KEY WORDS: shale gas, high-quality layer, qualitative-quantitative parameters, the Wufeng-Longmaxi Formation, the Niutitang Formation

HIGHLIGHTS

(1) Sedimentary facies, structural preservation conditions and lithology combinationwere the main qualitative parameters for identifying marine shale gas 'high-quality layer' in the Lower Paleozoic area.

(2) Gas content, pressure coefficient, TOC, Ro, porosity, brittle minerals, effective shale thickness and burial depth were the main quantitative parameters for identifying marine shale gas 'high-quality layer'.

(3) The gas content and pressure coefficient were the key parameters in the identification of marine shale gas 'high-quality layer'.

本文参考文献

[1]

Miriam C, Richard W, Fotios-Christos A, et al. A new rapid method for shale oil and shale gas assessment[J].Fuel, 2015, 153: 231-239. doi: 10.1016/j.fuel.2015.02.089

[2]

刘洪林, 王红岩, 方朝合, 等. 中国南方海相页岩气超压机制及选区指标研究[J]. 地学前缘, 2016, 23(2): 48-54.

Liu H L, Wang H Y, Fang C H, et al. The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China[J]. Earth Science Frontiers, 2016, 23(2): 48-54.

[3]

郗兆栋, 唐书恒, 王静, 等. 中国南方海相页岩气选区关键参数探讨[J]. 地质学报, 2018, 92(6): 1313-1323.

Xi Z D, Tang S H, Wang J, et al. Evaluation parameters study of selecting favorable shale gas areas in southern China[J]. Acta Geologica Sinica, 2018, 92(6): 1313-1323.

[4]

燕继红, 李启桂, 朱祥, 等. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向[J]. 石油实验地质, 2016, 38(4): 445-452.

Yan J H, Li Q G, Zhu X, et al. Main factors controlling shale gas accumulation and exploration targets in the Lower Cambrian, Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment, 2016, 38(4): 445-452.

[5]

王世谦, 王书彦, 满玲, 等. 页岩气选区评价方法与关键参数[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 609-620.

Wang S Q, Wang S Y, Man L, et al. Appraisal method and key parameters for screening shale gas play[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(6): 609-620.

[6]

Soeder D J. The successful development of gas and oil resources from shales in North America[J].Journal of Petroleum Science and Engineering, 2018, 163: 399-420. doi: 10.1016/j.petrol.2017.12.084

[7]

李玉喜, 张金川, 姜生玲, 等. 页岩气地质综合评价和目标优选[J]. 地学前缘, 2012, 19(5): 332-338.

Li Y X, Zhang J C, Jiang S L, et al. Geologic evaluation and targets optimization of shale gas[J]. Earth Science Frontiers, 2012, 19(5): 332-338.

[8]

张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1): 74-86.

Zhang J C, Yang C, Chen Q, et al. Deposition and distribution of potential shales in China[J]. Earth Science Frontiers, 2016, 23(1): 74-86.

[9]

李建青, 高玉巧, 花彩霞, 等. 北美页岩气勘探经验对建立中国南方海相页岩气选区评价体系的启示[J]. 油气地质与采收率, 2014, 21(4): 23-27.

Li J Q, Gao Y Q, Hua C X, et al. A comparative study of sand body genetic types based on model of fluvial evolution[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4): 23-27.

[10]

Jiang J M, Rami M. A multimechanistic multicontinuum model for simulating shale gas reservoir with complex fractured system[J].Fuel, 2015, 161: 333-344. doi: 10.1016/j.fuel.2015.08.069

[11]

董清源, 田建华, 冉琦, 等. 湖南永顺区块牛蹄塘组页岩气勘探前景及选区评价[J]. 东北石油大学学报, 2016, 40(3): 61-69.

Dong Q Y, Tian J H, Ran Q, et al. Exploration potential and favorable paly identification of Niutitang Formation shale gas of Yongshun Block in Hunan Province[J]. Journal of Northeast Petroleum University, 2016, 40(3): 61-69.

[12]

张鉴, 王兰生, 杨跃明, 等. 四川盆地海相页岩气选区评价方法建立及应用[J]. 天然气地球科学, 2016, 27(3): 433-441.

Zhang J, Wang L S, Yang Y M, et al. The development and application of the evaluation method of marine shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3): 433-441.

[13]

周印明, 刘雪军, 张春贺, 等. 快速识别页岩气"甜点"目标的时频电磁勘探技术及应用[J]. 物探与化探, 2015, 39(1): 60-63, 83.

Zhou Y M, Liu X J, Zhang C H, et al. The TEEM technology for quick identification of 'sweet spot' of shale gas and its applications[J]. Geophysical and Geochemical Exploration, 2015, 39(1): 60-63, 83.

[14]

陈胜, 赵文智, 欧阳永林, 等. 利用地球物理综合预测方法识别页岩气储层甜点——以四川盆地长宁区块下志留统龙马溪组为例[J]. 天然气工业, 2017, 37(5): 20-30.

Chen S, Zhao W Z, Ouyang Y L, et al. Comprehensive prediction of shale gas sweet spots based on geophysical properties:A case study of the Lower Silurian Longmaxi Formation in Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2017, 37(5): 20-30.

[15]

尚飞, 解习农, 李水福, 等. 基于地球物理和地球化学数据的页岩油甜点区综合预测:以泌阳凹陷核三段5号页岩层为例[J]. 地球科学, 2018, 43(10): 3640-3651.

Shang F, Xie X N, Li S F, et al. Comprehensive prediction of shale oil sweet spots based on geophysical and geochemical data:A case study of the Paleogene Hetaoyuan Formation, Biyang Depression, China[J]. Earth Science, 2018, 43(10): 3640-3651.

[16]

李武广, 杨胜来, 王珍珍, 等. 基于模糊优化分析法的页岩气开发选区模型[J]. 煤炭学报, 2013, 38(2): 264-270.

Li W G, Yang S L, Wang Z Z, et al. Shale gas development evaluation model based on the fuzzy optimization analysis[J]. Journal of China Coal Society, 2013, 38(2): 264-270.

[17]

谢国根, 张如鹏, 杨金华, 等. 基于模糊物元分析法的页岩气有利选区评价模型[J]. 地质科技情报, 2016, 35(6): 98-102.

Xie G G, Zhang R P, Yang J H, et al. Shale gas favorable area evaluation model based on the fuzzy matter element analysis[J]. Geological Science and Technology Information, 2016, 35(6): 98-102.

[18]

王思航, 田小林, 王楚柯, 等. 模糊相似法对页岩气选区评价的应用——以四川盆地海相页岩气为例[J]. 油气藏评价与开发, 2018, 8(1): 71-75.

Wang S H, Tian X L, Wang C K, et al. Application of fuzzy similarity methods for evaluating the district of shale gas:A case of marine shale gas in Sichuan Basin[J]. Progress in Exploration Geophysics, 2018, 8(1): 71-75.

[19]

徐政语, 梁兴, 鲁慧丽, 等. 四川盆地南缘昭通页岩气示范区构造变形特征及页岩气保存条件[J]. 天然气工业, 2019, 39(10): 22-31.

Xu Z Y, Liang X, Lu H L, et al. Structural deformation characteristics and shale gas preservation conditions in the Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(10): 22-31.

[20]

汤济广, 李豫, 汪凯明, 等. 四川盆地东南地区龙马溪组页岩气有效保存区综合评价[J]. 天然气工业, 2015, 35(5): 15-23.

Tang J G, Li Y, Wang K M, et al. Comprehensive evaluation of effective preservation zone of Longmaxi Formation shale gas in the southeast Sichuan Basin[J]. Natural Gas Industry, 2015, 35(5): 15-23.

[21]

王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678.

Wang S F, Dong D Z, Wang Y M, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678.

[22]

董大忠, 王玉满, 黄旭楠, 等. 中国页岩气地质特征、资源评价方法及关键参数[J]. 天然气地球科学, 2016, 27(9): 1583-1601.

Dong D Z, Wang Y M, Huang X N, et al. Discussion about geological characteristics resource evaluation methods and its key parameters of shale gas in China[J]. Natural Gas Geoscience, 2016, 27(9): 1583-1601.

[23]

张茜, 王剑, 余谦, 等. 扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩硅质成因及沉积环境[J]. 地质论评, 2018, 64(3): 610-622.

Zhang Q, Wang J, Yu Q, et al. The silicon source and sedimentary environment of the Lower Silurian Longmaxi Formation in Yanyuan Basin, western edge of the Yangtze Platform[J]. Geological Review, 2018, 64(3): 610-622.

[24]

蔡周荣, 夏斌, 黄强太, 等. 上、下扬子区古生界页岩气形成和保存的构造背景对比分析[J]. 天然气地球科学, 2015, 26(8): 1446-1454.

Cai Z R, Xia B, Huang Q T, et al. Comparative study of the tectonic setting on the formation and preservation of Paleozoic shale gas between the Upper Yangtze and the Lower Yangtze Platforms[J]. Natural Gas Geoscience, 2015, 26(8): 1446-1454.

[25]

刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28.

Liu S G, Deng B, Zhong Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28.

[26]

魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153.

Wei X F, Li Y P, Wei Z H, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment, 2017, 39(2): 147-153.

[27]

Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin, 2007, 91: 475-499. doi: 10.1306/12190606068

[28]

徐学敏, 汪双清, 孙玮琳, 等. 一种页岩含气性热演化规律研究的模拟实验方法[J]. 岩矿测试, 2016, 35(2): 186-192.

Xu X M, Wang S Q, Sun W L, et al. Thermal simulation experiment for evaluating the influence of thermal evolution on gas-bearing properties of shale[J]. Rock and Mineral Analysis, 2016, 35(2): 186-192.

[29]

张涛, 王小飞, 黎爽, 等. 压汞法测定页岩孔隙特征的影响因素分析[J]. 岩矿测试, 2016, 35(2): 178-185.

Zhang T, Wang X F, Li S, et al. Study on influencing factors in determining pore characteristics of shale by mercury intrusion[J]. Rock and Mineral Analysis, 2016, 35(2): 178-185.

[30]

王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235-243.

Wang Y, Wang L H, Wang J Q, et al. Three-dimension characterization of organic matter pore structures of shale using focused ion beam-scanning electron microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235-243.

[31]

葛明娜, 张金川, 李婉君, 等. 辽河西部凹陷页岩油气富集主控因素[J]. 石油地质与工程, 2015, 29(5): 46-49.

Ge M N, Zhang J C, Li W J, et al. Main controlling factors analysis of shale oil and gas accumulation in west sag of Liaohe Depression[J]. Petroleum Geology and Engineering, 2015, 29(5): 46-49.

[32]

何希鹏, 张培先, 房大志, 等. 渝东南彭水-武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018, 25(5): 72-79.

He X P, Zhang P X, Fang D Z, et al. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 72-79.

[33]

沈骋, 任岚, 赵金洲, 等. 页岩储集层综合评价因子及其应用——以四川盆地东南缘焦石坝地区奥陶系五峰组-志留系龙马溪组为例[J]. 石油勘探与开发, 2017, 44(4): 649-658.

Shen P, Ren L, Zhao J Z, et al. A comprehensive evaluation index for shale reservoirs and its application:A case study of the Ordovician Wufeng Formation to Silurian Longmaxi Formation in southeastern margin of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(4): 649-658.

[34]

Stueck H, Houseknecht D, Franke D, et al. Shale-gas assessment:Comparison of gas-in-place versus performance-based approaches[J].Natural Resources Research, 2016, 25(3): 315-329. doi: 10.1007/s11053-015-9283-y

[35]

张同伟, 张亚军, 贾敏, 等. 中国南方寒武系海相页岩含气性主控因素的科学问题[J]. 矿物岩石地球化学通报, 2018, 37(4): 572-579.

Zhang T W, Zhang Y J, Jia M, et al. Key scientific issues on controlling the variation of gas contents of Cambrian marine shales in southern China[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2018, 37(4): 572-579.

[36]

杨平, 汪正江, 余谦, 等. 四川盆地西南缘五峰-龙马溪组页岩气资源潜力分析[J]. 中国地质, 2019, 46(3): 601-614.

Yang P, Wang Z J, Yu Q, et al. An resources potential analysis of Wufeng-Longmaxi Formation shale gas in the southwestern margin of Sichuan Basin[J].Geology in China, 2019, 46(3): 601-614.

[37]

崔凯. 黔北绥页1井牛蹄塘组页岩气地质特征及资源潜力分析[J]. 中国地质调查, 2016, 3(3): 16-20.

Cui K. Geological characteristics and resource potential of shale gas from Well Suiye 1 in the Niutitang Formation, northern Guizhou[J]. Geological Survey of China, 2016, 3(3): 16-20.

[38]

赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.

Zhao W Z, Li J Z, Yang T, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.

[39]

Xiao X M, Wei Q, Gai H F, et al. Main controlling fact-ors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in South China[J].Petroleum Science, 2015, 12(4): 573-586. doi: 10.1007/s12182-015-0057-2

[40]

王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768.

Wang F Y, Guan J, Feng W P, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768.

[41]

郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成于富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.

Guo T L, Zhang H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.

[42]

Mastalerz M, Schimmelmann A, Drobniak A, et al. Poro-sity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97: 1621-1643. doi: 10.1306/04011312194

[43]

赵俊斌, 唐书恒, 张松航, 等. 湘西北牛蹄塘组页岩孔隙特征及影响因素分析[J]. 煤炭科学技术, 2014, 42(Supplement 1): 261-265.

Zhao J B, Tang S H, Zhang S H, et al. Analysis on characteristics and influence factors of shale pore in Niutitang Formation of northwestern Hunan[J]. Coal Science and Technology, 2014, 42(Supplement 1): 261-265.

[44]

戴娜, 钟宁宁, 张瑜, 等. 氩离子抛光/扫描电镜分析方法在笔石有机质研究中的应用[J]. 电子显微学报, 2015, 34(5): 416-420.

Dai N, Zhong N N, Zhang Y, et al. Ar ion milling/SEM analysis on graptolitinite macerals[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(5): 416-420.

[45]

马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37(1): 109-116.

Ma Y, Zhong N N, Cheng L J, et al. Pore structure of two organic-rich shales in southeastern Chongqing area:Insight from focused ion beam scanning electron microscope (FIB-SEM)[J]. Petroleum Geology and Experiment, 2015, 37(1): 109-116.

[46]

葛明娜, 张金川, 毛俊莉, 等. 辽河坳陷东部凸起上古生界页岩气资源潜力评价[J]. 天然气工业, 2012, 32(9): 28-32.

Ge M N, Zhang J C, Mao J L, et al. Evaluation on Neopaleozoic shale gas resource potential in the eastern salient of the Liaohe Depression[J]. Natural Gas Industry, 2012, 32(9): 28-32.

[47]

邵艳, 李卓文. 四川盆地威远地区龙马溪组页岩储层特征[J]. 地质学刊, 2016, 40(4): 624-630.

Shao Y, Li Z W. Characteristics of the Longmaxi Formation shale reservoir in the Weiyuan area of Sichuan Basin[J]. Journal of Geology, 2016, 40(4): 624-630.

[48]

张君峰, 许浩, 周志, 等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899.

Zhang J F, Xu H, Zhou Z, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899.

[49]

徐政语, 梁兴, 王维旭, 等. 上扬子区页岩气甜点分布控制因素探讨——以上奥陶统五峰组-下志留统龙马溪组为例[J]. 天然气工业, 2016, 36(9): 35-43.

Xu Z Y, Liang X, Wang W X, et al. Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region:A case study of the Upper Ordovician Wufeng Fm-Lower Silurian Longmaxi Fm, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 35-43.

[50]

冯动军, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气成藏条件分析[J]. 地质论评, 2016, 62(6): 1521-1532.

Feng D J, Hu Z Q, Gao B, et al. Analysis of shale gas reservoir-forming condition of Wufeng Formation-Longmaxi Formation in southeast Sichuan Basin[J]. Geological Review, 2016, 62(6): 1521-1532.

[51]

段承琏, 魏风玲, 魏瑞玲, 等. 彭水区块常压页岩气高效排采技术研究[J]. 油气藏评价与开发, 2020, 10(1): 64-70.

Duan C L, Wei F L, Wei R L, et al. High-efficient drainage technology of shale gas reservoirs with normal pressure in Pengshui Block[J]. Reservoir Evaluation and Development, 2020, 10(1): 64-70.

[52]

袁玉松, 方志雄, 何希鹏, 等. 彭水及邻区龙马溪组页岩气常压形成机制[J]. 油气藏评价与开发, 2020, 10(1): 9-16.

Yuan Y S, Fang Z X, He X P, et al. Normal pressure formation mechanism of Longmaxi shale gas in Pengshui and its adjacent areas[J]. Reservoir Evaluation and Development, 2020, 10(1): 9-16.

[53]

董敏, 张林炎, 王宗秀, 等. 鄂西地区下寒武统牛蹄塘组页岩气成藏及保存条件分析:以XD1井为例[J]. 地球科学, 2019, 44(11): 3616-3627.

Dong M, Zhang L Y, Wang Z X, et al. Accumulation characteristics and preservation conditions of Niutitang Formation of Lower Cambrian series shale gas in west Hubei:A case study of Well XD1[J]. Earth Science, 2019, 44(11): 3616-3627.

相似文献(共18条)

[1]

帅琴, 黄瑞成, 高强, 徐生瑞, 邱海鸥, 汤志勇. 页岩气实验测试技术现状与研究进展. 岩矿测试, 2012, 31(6): 931-938.

[2]

徐学敏, 汪双清, 孙玮琳, 沈斌, 秦婧, 杨佳佳, 芦苒. 一种页岩含气性热演化规律研究的模拟实验方法. 岩矿测试, 2016, 35(2): 186-192. doi: 10.15898/j.cnki.11-2131/td.2016.02.011

[3]

邱灵佳, 黄国林, 帅琴, 苏玉. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用. 岩矿测试, 2015, 34(2): 218-223. doi: 10.15898/j.cnki.11-2131/td.2015.02.011

[4]

马真乾, 王英滨, 于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究. 岩矿测试, 2018, 37(3): 244-255. doi: 10.15898/j.cnki.11-2131/td.201801090003

[5]

张烨毓, 曹茜, 黄毅, 戚明辉, 李孝甫, 林丹. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力. 岩矿测试, 2020, 39(2): 188-198. doi: 10.15898/j.cnki.11-2131/td.201908210126

[6]

李立武, 刘艳, 王先彬, 张铭杰, 曹春辉, 邢蓝田, 李中平. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用. 岩矿测试, 2017, 36(3): 222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137

[7]

张茜, 余谦, 王剑, 肖渊甫, 程锦翔, 赵安坤, 张彬. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境. 岩矿测试, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078

[8]

刘振庄, 白名岗, 杨玉茹, 张聪, 王向华, 陈娟, 谢婷, 方立羽, 秦丽娟. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨. 岩矿测试, 2020, 39(2): 199-207. doi: 10.15898/j.cnki.11-2131/td.201907110100

[9]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[10]

张聪, 夏响华, 杨玉茹, 白名岗, 代峰, 熊杰. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义. 岩矿测试, 2019, 38(1): 26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

[11]

竺成林, 王华建, 叶云涛, 王晓梅, 黄家旋, 朱玉梅, 杨瑞东. 基于原位多元素成像分析龙马溪组笔石成因及地质意义. 岩矿测试, 2019, 38(3): 245-259. doi: 10.15898/j.cnki.11-2131/td.201810110113

[12]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[13]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞, 普洁. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征. 岩矿测试, 2015, 34(3): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

[14]

蔡芃睿, 王春连, 刘成林, 杨飞, 徐海明, 谢腾骁, 余小灿, 孟令阳. 运用扫描电镜和压汞法研究江汉盆地古新统—白垩系砂岩储层孔喉结构及定量参数特征. 岩矿测试, 2017, 36(2): 146-155. doi: 10.15898/j.cnki.11-2131/td.2017.02.008

[15]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[16]

王海霞, 饶竹. 超临界萃取/气相色谱—质谱测定油页岩中的生物标志物. 岩矿测试, 2000, (2): 86-92.

[17]

刘平, 王勤燕. 混合相中硅线石和莫来石的X射线衍射定性定量分析. 岩矿测试, 1998, (4): 296-298302.

[18]

. 混合相中硅线石和莫来石的X射线衍射定性定量分析. 岩矿测试, 1998, (4): -.

计量
  • PDF下载量(12)
  • 文章访问量(192)
  • HTML全文浏览量(18)
  • 被引次数(0)
目录

Figures And Tables

中国南方下古生界海相页岩气“优质层段”识别方法与应用

葛明娜, 任收麦, 郭天旭, 王胜建, 周志