【引用本文】 朱晴, 乔向阳, 张磊, . 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试, 2020, 39(3): 373-383. doi: 10.15898/j.cnki.11-2131/td.201909230138
ZHU Qing, QIAO Xiang-yang, ZHANG Lei. Application of High-pressure Mercury Injection in Pore-throat Distribution Characterization and Early Productivity Evaluation of Tight Gas Reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3): 373-383. doi: 10.15898/j.cnki.11-2131/td.201909230138

高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用

陕西延长石油(集团)有限责任公司研究院, 陕西 西安 710065

收稿日期: 2019-09-23  修回日期: 2020-02-03  接受日期: 2020-04-23

基金项目: 陕西省重点科技创新团队项目“延长石油集团天然气勘探开发创新团队”(2015KCT-17);陕西省科技统筹创新项目“延长难采储量有效动用开发技术研究”(2016KTCL01-12),“延安气田先导试验区气藏开发特征及稳产对策研究”(ycsy2018ky-A-13)

作者简介: 朱晴, 学士, 高级工程师, 主要从事油气田开发综合研究。E-mail:272732128@qq.com

Application of High-pressure Mercury Injection in Pore-throat Distribution Characterization and Early Productivity Evaluation of Tight Gas Reservoirs

Research Institute of Yanchang Petroleum(Group) Co., LTD, Xi'an 710065, China

Received Date: 2019-09-23
Revised Date: 2020-02-03
Accepted Date: 2020-04-23

摘要:鄂尔多斯盆地东南部山西组致密气藏开发潜力巨大,准确评价储层孔喉结构是科学开发的基础,但目前关于其孔喉结构的研究较少。高压压汞实验能够以较低的成本实现对孔喉结构的有效表征,因此本文选取山西组致密砂岩储层的典型岩心进行高压压汞实验,采用退汞曲线代表喉道退汞过程和十进制毛管压力区间划分方法开展研究,进而根据孔喉半径分布曲线呈现出完全分离的双峰特征,定义了小孔喉区和大孔喉区,并分析其对物性参数的影响。实验结果分析表明:①总体孔喉和单独喉道主要发育的毛管压力区间均为0.1~1MPa和1~10MPa,喉道决定了孔喉配比和退汞效率;②小孔喉区相对体积占比平均为91.59%,大孔喉区相对体积占比平均为8.41%;③小孔喉区控制了储层的渗流能力,大孔喉区控制了储层的储容性。基于实验结果开展高压压汞的应用研究,进一步揭示小孔喉区决定了孔隙和喉道的发育程度,大孔喉区决定了气井的早期产能。本文研究表明,高压压汞实验在致密气藏完整孔喉分布和早期产能评价方面具有较好的应用前景,能够有效丰富关于致密气藏孔喉分布特征的认知,同时为致密气藏的科学开发提供了思路。

关键词: 高压压汞, 鄂尔多斯盆地, 致密砂岩储层, 完整孔喉分布, 早期产能评价

要点

(1) 揭示了鄂尔多斯东南部致密气藏孔喉的发育特征和物性的主控因素。

(2) 实现了采用高压压汞实验进行致密气藏完整孔喉分布的表征。

(3) 提出了高压压汞实验在致密气藏早期产能评价中的应用思路。

Application of High-pressure Mercury Injection in Pore-throat Distribution Characterization and Early Productivity Evaluation of Tight Gas Reservoirs

ABSTRACT

BACKGROUND:

The development potential of tight gas reservoirs of the Shanxi Formation in the southeastern Ordos Basin is huge. High-pressure mercury injection has been one of the most important methods for analyzing the pore-throat structure, however, it has seldom been applied in this area. The high-pressure mercury injection experiment can effectively characterize the pore-throat structure at a lower cost.

OBJECTIVES:

To apply high-pressure mercury injection to characterize pore-throat distribution of the tight gas reservoirs in the southeastern Ordos Basin.

METHODS:

Typical cores of tight gas reservoirs in the Shanxi Formation are selected for high-pressure mercury injection experiments. The research was carried out using the mercury withdrawal curve to represent the process of mercury withdrawal in the throat and the decimal capillary pressure interval division method, and then a completely separated double peak feature was shown according to the pore-throat radius distribution curves. The small and large pore-throat areas were defined, and their influence on physical property parameters was analyzed.

RESULTS:

The experiment results showed that the main capillary pressure ranges of the total pore-throat and the single pore-throat were 0.1-1MPa and 1-10MPa, respectively. The throat determined the pore-throat ratio and mercury ejection efficiency. The average relative volume of small and large pore-throat areas were 91.59% and 8.41%, respectively. The small pore-throat area controlled the reservoir seepage capacity, while the large pore-throat zone controlled the reservoir capacity.

CONCLUSIONS:

Based on the experimental results, the application research of the high-pressure mercury injection method further revealed that the small pore-throat area determines the development of pores and throats, and the large pore-throat area determines the early productivity of gas wells. The research shows that the high-pressure mercury injection test has a good application prospect in the characterization of integral pore-throat distribution and early productivity evaluation of tight gas reservoirs, which can effectively enrich the knowledge about the distribution characteristics of tight gas reservoir pore-throat and provide ideas for scientific development in this area.

KEY WORDS: high-pressure mercury injection, Ordos Basin, tight sandstone reservoir, integral pore-throat distribution, early productivity evaluation

HIGHLIGHTS

(1) The main controlling factors for development characteristic and physical properties of pore-throat in tight gas reservoirs in the southeastern Ordos Basin were revealed.

(2) The high-pressure mercury injection experiment was used to characterize the complete pore-throat distribution of tight gas reservoirs.

(3) The application idea of the high-pressure mercury injection experiment in the early productivity evaluation of tight gas reservoirs was proposed.

本文参考文献

[1]

陈生蓉, 帅琴, 高强, 等. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究[J]. 岩矿测试, 2015, 34(6): 636-642.

Chen S R, Shuai Q, Gao Q, et al. Analysis of the pore structure of shale in Ordos Basin by SEM with nitrogen gas adsorption-desorption[J]. Rock and Mineral Analysis, 2015, 34(6): 636-642.

[2]

王香增, 刘国恒, 黄志龙, 等. 鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J]. 天然气地球科学, 2015, 26(7): 1385-1394.

Wang X Z, Liu G H, Huang Z L, et al. The characteristics of shale reservoir of the No.7 Members in Yanchang Formation of southeast Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1385-1394.

[3]

刘振庄, 白名岗, 杨玉茹, 等. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨[J]. 岩矿测试, 2020, 39(2): 199-207.

Liu Z Z, Bai M G, Yang Y R, et al. Discussion on the genesis and exploration potential of different microscopic forms of organic matters in the Longmaxi Formation shale[J]. Rock and Mineral Analysis, 2020, 39(2): 199-207.

[4]

朱晴, 乔向阳, 张磊, 等. 恒速压汞在鄂尔多斯东南部致密砂岩储层中的应用[J]. 特种油气藏, 2019, 26(6): 123-128.

Zhu Q, Qiao X Y, Zhang L, et al. Application of constant-rate mercury injection in tight sandstone reservoirs of southeastern Ordos Basin[J]. Special Oil & Gas Reservoir, 2019, 26(6): 123-128.

[5]

杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455.

Yang F, Ning Z F, Kong D T, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455.

[6]

张烨毓, 曹茜, 黄毅, 等. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力[J]. 岩矿测试, 2020, 39(2): 188-198.

Zhang Y Y, Cao Q, Huang Y, et al. Application of high-temperature methane adsorption experiment to study the adsorption capacity of methane in shales from the Wufeng Formation, northeast Sichuan[J]. Rock and Mineral Analysis, 2020, 39(2): 188-198.

[7]

曹涛涛, 宋之光, 刘光祥, 等. 氮气吸附法-压汞法分析页岩孔隙、分形特征及其影响因素[J]. 油气地质与采收率, 2016, 23(2): 1-8.

Cao T T, Song Z G, Liu G X, et al. Characteristics of shale pores, fractal dimension and their controlling factors determined by nitrogen adsorption and mercury injection methods[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2): 1-8.

[8]

王刚, 沈俊男, 褚翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报, 2017, 42(8): 2074-2080.

Wang G, Shen J N, Chu X Y, et al. Characterization and analysis of pores and fissures of high rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2017, 42(8): 2074-2080.

[9]

郑剑锋, 陈永权, 倪新锋, 等. 基于CT成像技术的塔里木盆地寒武系白云岩储层微观表征[J]. 天然气地球科学, 2016, 27(5): 780-789.

Zheng J F, Chen Y Q, Ni X F, et al. Microstructure characteristics based on CT imaging technology of Cambrian dolomite reservoir in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(5): 780-789.

[10]

张磊, 乔向阳, 张亮, 等. 鄂尔多斯盆地旬邑探区延长组储层特征和开发效果[J]. 石油学报, 2020, 41(1): 88-95.

Zhang L, Qiao X Y, Zhang L, et al. Reservoir characteristics and development performance of Yanchang Formation in Xunyi exploration area, Ordos Basin[J]. Acta Petrolei Sinica, 2020, 41(1): 88-95.

[11]

刘晓鹏, 刘新社, 赵会涛, 等. 一种计算致密砂岩油气藏有效孔喉下限的新方法——以苏里格气田盒8气藏为例[J]. 新疆石油地质, 2016, 37(3): 360-364.

Liu X P, Liu X S, Zhao H T, et al. A new method to calculate the lower limit of effective pore throat threshold of tight sandstone reservoirs:A case study of He-8 gas reservoir in Sulige gas field[J]. Xinjiang Petroleum Geology, 2016, 37(3): 360-364.

[12]

蔡芃睿, 王春连, 刘成林, 等. 运用扫描电镜和压汞法研究江汉盆地古新统-白垩系砂岩储层孔喉结构及定量参数特征[J]. 岩矿测试, 2017, 36(2): 146-155.

Cai P R, Wang C L, Liu C L, et al. Study on pore structure and quantitative parameters of the Paleocene-Cretaceous sandstone reservoir in Jiangling Depression by SEM and mercury injection method[J]. Rock and Mineral Analysis, 2017, 36(2): 146-155.

[13]

公言杰, 柳少波, 朱如凯, 等. 致密油流动孔隙度下限——高压压汞技术在松辽盆地南部白垩系泉四段的应用[J]. 石油勘探与开发, 2015, 42(5): 681-688.

Gong Y J, Liu S B, Zhu R K, et al. Low limit of tight oil flowing porosity:Application of high-pressure mercury intrusion in the fourth member of Cretaceous Quantou Formation in southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2015, 42(5): 681-688.

[14]

Purcell W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2): 39-48.

[15]

Wardlaw N C, Taylor R P. Mercury capillary pressure curves and the intepretation of pore structure and capillary behaviour in reservoir rocks[J].Bulletin of Canadian Petroleum Geology, 1976, 24(2): 225-262.

[16]

Wardlaw N C, Li Y, Forbes D, et al. Pore-throat size corre-lation from capillary pressure curves[J].Transport in Porous Media, 1987, 2(6): 597-614.

[17]

Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone[J]. AAPG Bulletin, 1992, 76(2): 191-198.

[18]

唐仁骐, 曾玉华. 岩石退汞效率几个影响因素的研究[J]. 石油实验地质, 1994, 16(1): 84-93.

Tang R Q, Zeng Y H. The study on the retro-mercurometric efficiency of rocks[J]. Petroleum Geology & Experiment, 1994, 16(1): 84-93.

[19]

洪世铎, 孙士孝, 刘玉龙, 等. 碳酸盐岩孔隙结构与退汞效率的研究[J]. 新疆石油地质, 1986, 7(3): 54-63.

Hong S D, Sun S X, Liu Y L, et al. Study on pore structure and mercury removal efficiency of carbonate rocks[J]. Xinjiang Petroleum Geology, 1986, 7(3): 54-63.

[20]

Rashid F, Glover P W J, Lorinczi P, et al. Permeability prediction in tight carbonate rocks using capillary pressure measurements[J]. Marine and Petroleum Geology, 2015, (10): 68.

[21]

Salimifard B, Ruth D W, Nassichuk B.A study of mer-cury intrusion on Montney Formation rocks and how it relates to permeability[C]//Proceedings of SPE/CSUR Unconventional Resources Conference.Society of Petroleum Engineers, 2015.

[22]

廖明光, 李仕伦, 谈德辉, 等. 根据压汞曲线估算储集层渗透率的模型[J]. 新疆石油地质, 2001, 22(6): 503-505.

Liao M G, Li S L, Tan D H, et al. Establishment of permeability estimation model for reservoir rocks based on mercury injection curves[J]. Xinjiang Petroleum Geology, 2001, 22(6): 503-505.

[23]

Schmitt M, Fernandes C P, da Cunha Neto J A B, et al. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques[J]. Marine and Petroleum Geology, 2013, 39(1): 138-149.

[24]

Clarkson C R, Solano N R, Bustin R M, et al. Pore stru-cture characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J].Fuel, 2013, 103: 606-616.

[25]

Gane P A C, Ridgway C J, Lehtinen E, et al. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures[J].Industrial & Engineering Chemistry Research, 2004, 43(24): 7920-7927.

[26]

Marschall D, Gardner J S, Mardon D, et al.Method for correlating NMR relaxometry and mercury injection data[C]//Proceedings of 1995 SCA Conference, 1995.

[27]

公言杰, 柳少波, 赵孟军, 等. 核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征[J]. 石油实验地质, 2016, 38(3): 389-394.

Gong Y J, Liu S B, Zhao M J, et al. Characterization of micro pore throat radius distribution in tight oil reservoirs by NMR and high pressure mercury injection[J]. Petroleum Geology & Experiment, 2016, 38(3): 389-394.

[28]

宁传祥, 姜振学, 高之业, 等. 用核磁共振和高压压汞定量评价储层孔隙连通性——以沾化凹陷沙三下亚段为例[J]. 中国矿业大学学报, 2017, 46(3): 578-585.

Ning C X, Jiang Z X, Gao Z Y, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:A case study of the lower section of Es3 in Zhanhua Sag[J]. Journal of China University of Mining & Technology, 2017, 46(3): 578-585.

[29]

李爱芬, 任晓霞, 王桂娟, 等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6): 92-98.

Li A F, Ren X X, Wang G J, et al. Characteristics of pore structure of low permeability reservoir using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(6): 92-98.

[30]

欧阳思琪, 孙卫, 黄何鑫, 等. 多方法协同表征特低渗砂岩储层全孔径孔隙结构——以鄂尔多斯盆地合水地区砂岩储层为例[J]. 石油实验地质, 2018, 40(4): 595-604.

Ouyang S Q, Sun W, Huang H X, et al. Multi-method synergistic characterization of total pore structure of extra-low permeability sandstone reservoirs:Case study of the Heshui area of Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 595-604.

[31]

严强, 张云峰, 付航, 等. 运用高压压汞及扫描电镜多尺度表征致密砂岩储层微纳米级孔喉特征——以渤海湾盆地沾化凹陷义176区块沙四段致密砂岩储层为例[J]. 石油实验地质, 2018, 40(2): 280-287.

Yan Q, Zhang Y F, Fu H, et al. High pressure mercury injection and scanning electron microscopy applied to characterize micro-and nano-scale pore throats in tight sandstone reservoirs:A case study of the fourth member of Shahejie Formation in Yi176 Block, Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 280-287.

[32]

杨华, 刘新社, 闫小雄, 等. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏[J]. 地学前缘, 2015, 22(3): 174-183.

Yang H, Liu X S, Yan X X, et al. The relationship between tectonic-sedimentary evolution and tight sandstone gas reservoir since the Late Paleozoic in Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 174-183.

[33]

张磊, 石军太, 张庆辉, 等. 鄂尔多斯盆地东南部页岩核磁共振实验研究[J]. 煤炭学报, 2018, 43(10): 2876-2885.

Zhang L, Shi J T, Zhang Q H, et al. Experimental study on the nuclear magnetic resonance of shale in the southeastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(10): 2876-2885.

[34]

康毅力, 张浩, 陈一健, 等. 鄂尔多斯盆地大牛地气田致密砂岩气层应力敏感性综合研究[J]. 天然气地球科学, 2006, 17(3): 335-338.

Kang Y L, Zhang H, Chen Y J, et al. Comprehensive research of tight sandstones gas reservoirs stress sensitivity in Daniudi gas field[J]. Natural Gas Geoscience, 2006, 17(3): 335-338.

[35]

祝海华, 钟大康, 姚泾利, 等. 碱性环境成岩作用及对储集层孔隙的影响——以鄂尔多斯盆地长7段致密砂岩为例[J]. 石油勘探与开发, 2015, 42(1): 51-59.

Zhu H H, Zhong D K, Yao J L, et al. Alkaline diagenesis and its effects on reservoir porosity:A case study of Upper Triassic Chang 7 tight sandstones in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 51-59.

[36]

牛小兵, 冯胜斌, 刘飞, 等. 低渗透致密砂岩储层中石油微观赋存状态与油源关系——以鄂尔多斯盆地三叠系延长组为例[J]. 石油与天然气地质, 2013, 34(3): 288-293.

Niu X B, Feng S B, Liu F, et al. Microscopic occurrence of oil in tight sandstones and its relation with oil sources-A case study from the Upper Triassic Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2013, 34(3): 288-293.

[37]

崔鹏兴, 刘双双, 党海龙, 等. 低渗透油藏渗吸作用及其影响因素研究[J]. 非常规油气, 2017, 4(1): 88-93.

Cui P X, Liu S S, Dang H L, et al. The study of imbibition in low permeability reservoir and its influence factors[J]. Unconventional Oil & Gas, 2017, 4(1): 88-93.

[38]

赵靖舟, 白玉彬, 曹青, 等. 鄂尔多斯盆地准连续型低渗透-致密砂岩大油田成藏模式[J]. 石油与天然气地质, 2012, 33(6): 811-827.

Zhao J Z, Bai Y B, Cao Q, et al. Quasi-continuous hydrocarbon accumulation:A new pattern for large tight sand oilfields in the Ordos Basin[J]. Oil & Gas Geology, 2012, 33(6): 811-827.

[39]

王香增, 高胜利, 高潮, 等. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014, 41(3): 294-304.

Wang X Z, Gao S L, Gao C, et al. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3): 294-304.

[40]

王明磊, 张福东, 关辉, 等. 致密油评价新方法及其应用——以鄂尔多斯盆地延长组长7段致密油为例[J]. 非常规油气, 2015, 2(2): 10-15.

Wang M L, Zhang F D, Guan H, et al. New tight oil evaluation technology and its application-A case study of Chang 7 tight oil reservoir in Yanchang Formation, Ordos Basin[J]. Unconventional Oil & Gas, 2015, 2(2): 10-15.

[41]

吴春燕, 程玉群, 沈英, 等. 延长陆相页岩微观孔隙结构分析[J]. 非常规油气, 2016, 3(3): 21-26.

Wu C Y, Cheng Y Q, Shen Y, et al. Analysis of microscopic pore structures in Yanchang continental shale[J]. Unconventional Oil & Gas, 2016, 3(3): 21-26.

[42]

王伟力, 高海仁. 鄂尔多斯盆地东南部上古生界地层压力与天然气分布[J]. 科技导报, 2015, 33(3): 37-42.

Wang W L, Gao H R. Formation pressure and distribution of natural gas in the Upper Paleozoic, southeastern Ordos Basin[J]. Science & Technology Review, 2015, 33(3): 37-42.

[43]

王涛, 邓建民, 展转盈, 等. 注水泥环空动态顶替界面长距离数值模拟[J]. 非常规油气, 2018, 5(6): 87-93.

Wang T, Deng J M, Zhan Z Y, et al. Numerical simulation on dynamic displacement interface in the process of cementing in annulus[J]. Unconventional Oil & Gas, 2018, 5(6): 87-93.

[44]

陈莹, 曹青, 刘鹏, 等. 鄂尔多斯盆地东南部上古生界山2气藏形成地质条件分析[J]. 天然气地球科学, 2011, 22(6): 969-974.

Chen Y, Cao Q, Liu P, et al. Geological conditions of Upper Paleozoic Shan-2 gas reservoir in southeastern Ordos Basin[J]. Natural Gas Geoscience, 2011, 22(6): 969-974.

[45]

高飞, 王念喜, 乔向阳, 等. 基于古盐度、古水温的白云岩成岩环境分析——以鄂尔多斯盆地东南部延长探区马五1亚段为例[J]. 非常规油气, 2019, 6(5): 47-53.

Gao F, Wang N X, Qiao X Y, et al. Dolomite diagenetic environments analysis based on ancient salinity and ancient water temperature:A case study of M51sub-members of Majiagou Formation in Yanchang area of southeast Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(5): 47-53.

[46]

陈建平, 黄第藩. 鄂尔多斯盆地东南缘煤矿侏罗系原油油源[J]. 沉积学报, 1997, 15(2): 100-104.

Chen J P, Huang D F. Oil/source correlation of crude oils from the coal mines in the southeast of the Ordos Basin[J]. Acta Sedimentologica Sinica, 1997, 15(2): 100-104.

[47]

胡林楠.鄂尔多斯盆地东南部上古生界致密砂岩气藏成藏规律研究[D].西安: 西安石油大学, 2013.

Hu L N.The accumulation study of tight sand gas reservoir in the Upper Paleozoic in the southeast part of Ordos Basin[D].Xi'an: Xi'an Shiyou University, 2013.

[48]

秦波, 曹斌风, 周进松, 等. 致密砂岩气储层有效性识别和定量评价——以鄂尔多斯盆地东南部上古生界山西组一段为例[J]. 沉积学报, 2019, 37(2): 403-415.

Qin B, Cao B F, Zhou J S, et al. Availability identification of tight gas sandstone reservoirs and quantitative assessment:A case study of from the first member of the Upper Paleozoic Shanxi Formation in the southeastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 403-415.

[49]

魏虎.低渗致密砂岩气藏储层微观结构及对产能影响分析[D].西安: 西北大学, 2011.

Wei H.Micro-structure of the low permeability & tight sandstone gas reservoir and its influence on production[D].Xi'an: Northwest University, 2011.

相似文献(共16条)

[1]

王震亮, 刘林玉, 柳益群. 鄂尔多斯盆地西峰地区长8砂岩微观非均质性的实验分析. 岩矿测试, 2008, 27(1): 29-32.

[2]

孙小龙, 张宪国, 林承焰, 赵仲祥, 马存飞, 林建力. 基于核磁共振标定的高压压汞孔喉分布定量评价方法. 岩矿测试, 2017, 36(6): 601-607. doi: 10.15898/j.cnki.11-2131/td.201706110097

[3]

高辉, 孙卫, 费二战, 齐银, 李达. 特低-超低渗透砂岩储层微观孔喉特征与物性差异. 岩矿测试, 2011, 30(2): 244-250.

[4]

蔡芃睿, 王春连, 刘成林, 杨飞, 徐海明, 谢腾骁, 余小灿, 孟令阳. 运用扫描电镜和压汞法研究江汉盆地古新统—白垩系砂岩储层孔喉结构及定量参数特征. 岩矿测试, 2017, 36(2): 146-155. doi: 10.15898/j.cnki.11-2131/td.2017.02.008

[5]

张莉娟, 安树清, 徐铁民, 张楠, 魏双, 方蓬达. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究. 岩矿测试, 2018, 37(4): 396-403. doi: 10.15898/j.cnki.11-2131/td.201712180194

[6]

李艳霞, 闫新义, 田毓峰. 鄂尔多斯盆地定边地区山西组流体包裹体的拉曼光谱特征. 岩矿测试, 2015, 34(6): 678-683. doi: 10.15898/j.cnki.11-2131/td.2015.06.012

[7]

劳玉军, 巫建华, 徐勋胜. 粤北长塘盆地晚白垩世早期流纹岩的成因:地球化学和Sr-Nd-Pb-Hf-O同位素制约. 岩矿测试, 2016, 35(5): 558-567. doi: 10.15898/j.cnki.11-2131/td.2016.05.015

[8]

陈 勇, 葛云锦. 实验研究碳酸盐岩储层烃类包裹体捕获模式. 岩矿测试, 2010, 29(3): 217-220.

[9]

毛毳, 陈勇, 周瑶琪, 王有智, 周俊辉. 储层烃类包裹体类型识别与PVT模拟方法. 岩矿测试, 2010, 29(6): 648-652.

[10]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[11]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[12]

郝红, 高博, 王健康, 周怀东, 陆瑾, 殷淑华, 朱成. 滦河流域沉积物中重金属分布特征及风险评价. 岩矿测试, 2012, 31(6): 1000-1005.

[13]

赵志飞, 闫晖, 姚岚, 方金东, 唐兴敏. 正态分布在区域地球化学调查样品分析质量评价中的应用探讨. 岩矿测试, 2013, 32(1): 96-100.

[14]

王大娟, 杨根兰, 向喜琼, 蒋文杰, 朱健. 邻菲啰啉分光光度法测定红层砂岩中Fe(Ⅱ)和全铁的方法探讨. 岩矿测试, 2020, 39(2): 216-224. doi: 10.15898/j.cnki.11-2131/td.201906200088

[15]

赵文海, 张华新, 李锡坤, 李展强, 张汉萍, 李海萍. 广州市黄埔港区土壤中汞的形态分析及分布特征. 岩矿测试, 2005, (1): 31-35.

[16]

刘曙, 李晨, 诸秀芬, 周海明. 上海口岸进口煤炭总汞含量的分布特征. 岩矿测试, 2014, 33(5): 730-736.

计量
  • PDF下载量(5)
  • 文章访问量(169)
  • HTML全文浏览量(19)
  • 被引次数(0)
目录

Figures And Tables

高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用

朱晴, 乔向阳, 张磊