【引用本文】 杨池玉, 陆太进, 张健, 等. 河南产宝石级高温高压合成钻石的谱学特征及电磁性研究[J]. 岩矿测试, 2021, 40(2): 217-226. doi: 10.15898/j.cnki.11-2131/td.201909050129
YANG Chi-yu , LU Tai-jin , ZHANG Jian , et al. Spectral Characteristics and Electrical & Magnetic Properties of Gemquality High Pressure High Temperature Grown Synthetic Diamonds[J]. Rock and Mineral Analysis, 2021, 40(2): 217-226. doi: 10.15898/j.cnki.11-2131/td.201909050129

河南产宝石级高温高压合成钻石的谱学特征及电磁性研究

1. 自然资源部珠宝玉石首饰管理中心北京研究所, 北京 100013;

2. 同济大学浙江学院珠宝系, 浙江 嘉兴 314051;

3. 中国地质大学(北京)珠宝学院, 北京 100083

收稿日期: 2019-09-05  修回日期: 2019-12-10 

基金项目: 国家自然科学基金项目(41473030和41272086);国家珠宝玉石质量监督检验中心(NGTC)科研基金项目(NGTCBJ18005和NGTC20200300)

作者简介: 杨池玉,教师,宝石学专业。E-mail:1341543126@qq.com。

通信作者:

Spectral Characteristics and Electrical & Magnetic Properties of Gemquality High Pressure High Temperature Grown Synthetic Diamonds

1. Beijing Institute, National Gems & Jewelry Technology Administrative Center, Beijing 100013, China;

2. Jewellery Department of Zhejiang College, Tongji University, Jiaxing 314051, China;

3. China University of Geosciences, Beijing 100083, China

Corresponding author: LU Tai-jin , 主要从事钻石、有色宝石等的检测及仪器开发等研究。taijinlu@hotmail.com。

Received Date: 2019-09-05
Revised Date: 2019-12-10

摘要:为快速鉴定高温高压(HPHT)合成钻石,前人已开展了系统的发光特征和谱学特征研究,但对比性分析较少,且对电学性质和磁学性质关注不多。本文结合常规宝石学观察、高精度谱学测试以及导电性和磁性测试,对49粒无色、黄色样品进行了深入研究和对比分析。结果表明:①铁、钴、镍等金属元素的触媒残余是HPHT合成钻石的磁性来源,测试样品均能被磁强达到12000Gs的磁棒吸引。②无色HPHT合成钻石为Ⅱa+Ⅱb型钻石,硼元素的存在导致其具有良好的导电能力,且随着硼含量的增多,导电能力逐渐增强;黄色样品为Ⅰb+ⅠaA型钻石,约三分之一的孤氮转化为了A集合体,揭示了合成钻石在生长完成后经过了高温退火处理。③硼元素的普遍存在,以及氮元素主要以孤氮原子和A集合体的方式存在,导致了HPHT合成钻石的特征红外光谱;HPHT合成钻石中常含有氮、镍、硅等杂质元素引起的晶格缺陷,导致了特征的光致发光光谱。④无色HPHT合成钻石具有强蓝绿色荧光和磷光,黄色HPHT合成钻石具有绿色荧光,可见明显的立方体-八面体分区现象。本研究表明:谱学特征和发光特征仍然是筛查鉴定HPHT合成钻石的重要依据。现生长技术下合成的HPHT合成钻石在导电性和磁性两方面也和天然钻石存在明显差异,可以作为快速鉴定合成钻石的辅助性依据。

关键词: 高温高压合成钻石, 磁性, 导电性, 傅里叶变换红外光谱, 光致发光光谱, 钻石观测仪

Spectral Characteristics and Electrical & Magnetic Properties of Gemquality High Pressure High Temperature Grown Synthetic Diamonds

KEY WORDS: HPHT synthetic diamond, magnetism, electricity, Fourier transform infrared spectroscopy, photoluminescence spectrum, diamond viewer

本文参考文献

[1]

Lu T J,Ke J,Lan Y,et al.Current status of Chinese synthetic diamonds[J].The Journal of Gemmology,2019,36(8):642-651.

[2]

Ulrika F S,Johannsson D H,Moe K S,et al.Near-colorless HPHT synthetic diamonds from AOTC group[J].Gems & Gemology,2014,50(1):30-45.

[3]

Ulrika F S,Johannsson D H,Katrusha A,et al.Large colorless HPHT synthetic diamonds from New Diamond Technology[J].Gems & Gemology,2015,51(3):260-279.

[4]

宋中华,陆太进,苏隽,等.无色-近无色高温高压合成钻石的谱图特征及其鉴别方法[J].岩矿测试,2016,35(5):496-504.

Song Z H,Lu T J,Su J,et al.The spectral characteristics and identification techniques for colorless and near-colorless HPHT synthetic diamonds[J].Rock and Mineral Analysis,2016,35(5):496-504.

[5]

张健,陆太进,柯捷,等.黄河旋风宝石级黄色与无色HPHT合成钻石的宝石学特征[J].中国宝石,2018(5):186-189. Zhang J,Lu T J,Ke J,et al.Gemmological characteristics of yellow and colorless HPHT synthetic diamonds from Henan Huanghe Whirlwind Co,LTD[J].China Gems,2018

(5):186-189.

[6]

梁榕,兰延,张天阳,等.山东产大颗粒高温高压合成钻石的多种谱学方法研究[J].光谱学与光谱分析,2019,39(6):1840-1845.

Liang R,Lan Y,Zhang T Y,et al.Multi-spectroscopy studies on large grained HPHT synthetic diamonds from Shandong,China[J].Spectroscopy and Spectral Analysis,2019,39(6):1840-1845.

[7]

宋中华,陆太进,柯捷,等.国产大颗粒宝石级无色高压高温合成钻石的鉴定特征[J].宝石和宝石学杂志,2016,18(3):1-8.

Song Z H,Lu T J,Ke J,et al.Identification characteristics of large near-colorless HPHT synthetic diamonds from China[J].Journal of Gems and Gemmology,2016,18(3):1-8.

[8]

兰延,陆太进,张丛森,等.新型GV5000宽频诱导发光测试仪的研制及其应用于筛分无色小颗粒合成钻石和天然钻石[J].岩矿测试,2016,35(5):505-512.

Lan Y,Lu T J,Zhang C S,et al.Development of a new muti-spectral induced luminscence imaging system (GV5000) and its application in screening melee-sized near colorless synthetic diamonds and natural diamonds[J].Rock and Mineral Analysis,2016,35(5):505-512.

[9]

Kirk F.Detecting HPHT synthetic diamond using handheld magnet[J].Gem & Gemmology,2012,48(4):262-272.

[10]

Yelisseyev A P,Afanasiev V P,Ikorsky V N.Magnetic susceptibility of natural diamonds[J].Doklady Earth Sciences,2009,425(2):330-333.

[11]

吴旭旭,陆太进,杨池玉,等.高温高压合成钻石晶体表面微形貌观察及其成因探讨[J].岩矿测试,2019,38(4):411-417.

Wu X X,Lu T J,Yang C Y,et al.Observation of surface microstructure of HPHT synthetic diamond crystals and genesis discussion[J].Rock and Mineral Analysis,2019,38(4):411-417.

[12]

Ščajev P,Trinkler L,Berzina B,et al.Influence of boron on donor-acceptor pair recombination in type Ⅱa HPHT diamonds[J].Diamond and Related Materials,2013,36:35-43.

[13]

Sally E M,James E,Christopher M B.Observations on HPHT-grown synthetic diamonds:A review[J].Gems & Gemology,2017,53(3):262-285.

[14]

Shigley J E,Christopher M.Breeding.Optical defects in diamond:A quick reference chart[J].Gems & Gemology,2013,49(2):107-111.

[15]

Kennedy L,Johnson P.Yellow synthetic diamond with nickel-related green fluorescence[J].Gems & Gemology,2016,52(2):196-197.

[16]

Klepikov I V,Koliadin A V,Vasilev E A.Analysis of type Ⅱb synthetic diamond using FTIR spectrometry[J].IOP Conference Series:Materials Science and Engineering,2018,286:1757-8981.

[17]

Babamoradi M,Asgari S,Ranjbar A,et al.Many-electron states of the N2 and N3 color centers in diamond:A first-principles and many-body study.Physica B:Condensed Matter,2017,505(16):17-21.

[18]

Salustro S,Ferrari A M,Gentile F S,et al.Characterization of the B-center defect in diamond through the vibrational spectrum:A quantum-mechanical approach (Article)[J].Journal of Physical Chemistry A,2018,122(2):594-600.

[19]

Zaitsev A M.Optical properties of diamond:A data handbook[M].Berlin-Heidelberg-New York:Springer-Verlag,2001:48-49,52,57-63,203,218-225,260-275.

[20]

Kazuchits N M,Rusetsky M S,Kazuchits V N,et al.Aggregation of nitrogen in synthetic diamonds annealed at high temperature without stabilizing pressure[J].Diamond and Related Materials,2016,64:202-207.

[21]

陈宁.硫(氢)掺杂金刚石单晶的高压合成及金刚石色心研究[D]:长春:吉林大学,2018.

[22]

梁中翥,梁静秋,郑娜,等.掺氮金刚石的光学吸收与氮杂质含量的分析研究[J].物理学报,2009,58(11):8039-8043.

Liang Z Z,Liang J Q,Zheng N,et al.Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis[J].Acta Physica Sinica,2009,58(11):8039-8043.

[23]

Hisao K,Minoru A,Shinobu Y.Synthesis of diamond with the highest nitrogen concentration[J].Diamond and Related Materials,1999(8):1441-1443.

[24]

Zaitsev A M,Moe K S,Wang W.Optical centers and their depth distribution in electron irradiated CVD diamond[J].Diamond and Related Materials,2017,71:38-52.

[25]

Peng J,Balili R,Beaumariage J,et al.Multiple-photon excitation of nitrogen vacancy centers in diamond[J].Physical Review B,2018,97(13):2469-9950.

[26]

Ashfold M N R,Goss J P,Green B L,et al.Nitrogen in diamond[J].Chemical Reviews,2020,doi:10.1021/acs.chemrev.9b00518.

[27]

Tang S,Song Z H,Lu T J,et al.Two natural type Ⅱa diamonds with strong phosphorescence and Ni-related defects[J].Gems & Gemology,2017,53(4):476-478.

[28]

Lawson S C,Kanda H.An annealing study of nickel point defects in high-pressure synthetic diamond[J].Journal of Applied Physics,1993,73:3967-3973.

[29]

Eaton MS,Shigley J E.Observations on CVD-grown synthetic diamonds:A review[J].Gems & Gemology,2016,52(3):222-245.

[30]

FisherD,Sibley S J,Kelly C J.Brown colour in natural diamond and interaction between the brown related and other colour-inducing defects[J].Journal of Physics.Condensed Matter:An Institute of Physics Journal,2009,21(36):364213-364223.

[31]

Stuart AG,Ramon E,Rupert H,et al.Anatomy of a pressure-induced,ferromagnetic-to-paramagnetic transition in pyrrhotite:Implications for the formation pressure of diamonds[J].Journal of Geophysical Research:Solid Earth,2011,116(B10):148-227.

[32]

Nestola F,Cerantola V,Milani S,et.al.Synchrotron mossbauer source technique for in situ measurement of iron-bearing inclusions in natural diamonds[J].Lithos,2016,265:328-333.

相似文献(共16条)

[1]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[2]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[3]

宋中华, 陆太进, 唐诗, 高博, 苏隽, 柯捷. 高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征. 岩矿测试, 2020, 39(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201905200067

[4]

范瑶瑶, 胡宗超, 郝宏艳, 刘政平, 覃汉清. X射线衍射-红外光谱-扫描电镜表征超声辅助合成GdPO4:Ce, Tb纳米材料形貌及光学性质. 岩矿测试, 2016, 35(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.2016.02.007

[5]

严俊, 胡丹静, 黄雪冰, 彭秋瑾, 刘晋华, 张旭, 张俭. 应用FTIR-SEM研究一类合成欧珀的微结构及其变彩成因机制. 岩矿测试, 2017, 36(1): 59-65. doi: 10.15898/j.cnki.11-2131/td.2017.01.009

[6]

吴旭旭, 陆太进, 杨池玉, 张健, 唐诗, 陈华, 张勇, 柯捷, 何明跃. 高温高压合成钻石晶体表面微形貌观察及其成因探讨. 岩矿测试, 2019, 38(4): 411-417. doi: 10.15898/j.cnki.11-2131/td.201811150122

[7]

邵惠萍, 严雪俊, 严俊, 王金, 余思逸, 彭秋瑾, 胡仙超. 应用傅里叶变换红外光谱与紫外可见吸收光谱鉴别两类海水养殖灰色珍珠. 岩矿测试, 2019, 38(5): 489-496. doi: 10.15898/j.cnki.11-2131/td.201809280109

[8]

兰延, 陆太进, 张丛森, 梁榕, 丁汀, 陈华, 柯捷, 毕立君. 新型GV5000宽频诱导发光测试仪的研制及其应用于筛分无色小颗粒合成钻石和天然钻石. 岩矿测试, 2016, 35(5): 505-512. doi: 10.15898/j.cnki.11-2131/td.2016.05.009

[9]

牛菲, 高志农. 傅立叶变换红外光谱联用技术在化石燃料分析中的应用. 岩矿测试, 1998, (1): 58-63.

[10]

王群威, 林力, 邬蓓蕾, 林振兴. 傅立叶变换近红外光谱定量分析煤炭挥发分. 岩矿测试, 2006, 25(2): 133-136.

[11]

黄瑞成, 李灵凤, 赵海, 刘芳, 魏灵巧, 罗磊. 电感耦合等离子体发射光谱法测定超贫磁铁矿和磁性物中有益有害组分及可选性评价. 岩矿测试, 2017, 36(1): 40-45. doi: 10.15898/j.cnki.11-2131/td.2017.01.006

[12]

李维华, 段玉然. 傅里叶变换拉曼光谱测定氢气中正—仲氢质量比. 岩矿测试, 1999, (1): 19-.

[13]

王智宏 林君 武子玉 朱虹 占细雄. 便携式近红外光谱矿物分析仪分光系统研制. 岩矿测试, 2005, (1): 59-61.

[14]

修连存, 郑志忠, 俞正奎, 黄俊杰, 陈春霞, 殷靓, 王弥建, 张秋宁, 黄宾, 修铁军, 吴萍. 近红外光谱仪测定岩石中蚀变矿物方法研究. 岩矿测试, 2009, 28(6): 519-523.

[15]

班俊生, 任金鑫, 刘桂珍, 臧苗苗, 杨莹雪, 王烨. 磁铁矿中磁性物成分的测定及可选性评价. 岩矿测试, 2013, 32(3): 469-473.

[16]

刘云, 钱汉东, 季寿元. 黑云母的红外光谱研究. 岩矿测试, 1985, (4): 307-313.

计量
  • PDF下载量(6)
  • 文章访问量(542)
  • 被引次数(0)
目录

Figures And Tables

河南产宝石级高温高压合成钻石的谱学特征及电磁性研究

杨池玉, 陆太进, 张健, 宋中华, 陈华, 柯捷, 何明跃