【引用本文】 严爽, 黄康俊, 付勇, 等. 铝土矿中锂同位素分离提纯方法的建立[J]. 岩矿测试, 2020, 39(1): 41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275
YAN Shuang, HUANG Kang-jun, FU Yong, et al. Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite[J]. Rock and Mineral Analysis, 2020, 39(1): 41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275

铝土矿中锂同位素分离提纯方法的建立

1. 

贵州大学资源与环境工程学院, 贵州 贵阳 550025

2. 

贵州大学喀斯特地质资源与环境教育部重点实验室, 贵州 贵阳 550025

3. 

西北大学地质学系, 大陆动力学国家重点实验室, 陕西 西安 710069

4. 

中国地质科学院矿产资源研究所, 北京 100037

收稿日期: 2019-08-12  修回日期: 2019-09-12  接受日期: 2019-10-21

基金项目: 国家重点研发计划深地资源勘查开采专题(2017YFC0602701);中国地质调查局中国矿产地质志项目(DD20160346,DD20190379);贵州省人才基地项目(RCJD2018-21)

作者简介: 严爽, 硕士研究生, 地质学专业。E-mail:yanshuang1031@163.com

通信作者: 付勇, 博士, 副教授, 主要从事矿床地球化学及相关研究。E-mail:byez1225@126.com

Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite

1. 

College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China

2. 

Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China

3. 

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China

4. 

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Corresponding author: FU Yong, byez1225@126.com

Received Date: 2019-08-12
Revised Date: 2019-09-12
Accepted Date: 2019-10-21

摘要:铝土矿是极端风化作用的产物,也是锂的重要载体,由于其资源量巨大,对铝土矿中锂的富集机制和分布规律的研究将有利于找矿预测。锂同位素的高效准确分析是深入认识矿物中锂的富集机制和分布规律的基础。铝土矿样品由于化学稳定性较强,溶样过程较为复杂,且Al、Na、Ca、K等基体元素含量远高于锂,给锂的纯化增加不少难度。本文采用内径5mm、柱长190mm的聚四氟乙烯离子交换柱和AG50W-X12阳离子交换树脂,以0.5mol/L硝酸为淋洗液淋洗34mL,收集最后的12mL,即可完成对铝土矿中锂的完全纯化回收。该纯化方法减少了淋洗液的使用量,提高了实验效率。采用该方法对国际标样L-SVEC、RGM-2、GSP-2进行锂的纯化,通过多接收电感耦合等离子体质谱仪(MC-ICP-MS)测试锂同位素组成,得到的δ7Li测试值分别为-0.26‰±0.09‰(2SD,n=3)、3.19‰±0.37‰(2SD,n=3)、-0.78‰±0.22‰(2SD,n=3),与前人报道一致,验证了该方法的可靠性。此外,采用本方案对铝土矿国家标样(GBW07182)进行锂的纯化,δ7Li测定值为10.16‰±0.21‰(2SD,n=3)。

关键词: 铝土矿, 伴生锂, 分离提纯, 锂同位素, MC-ICP-MS, 标准物质

要点

(1) 以0.5mol/L硝酸为淋洗液,收集12mL即可完成对锂的完全纯化回收。

(2) 纯化后的溶液Na/Li(质量比)<1,Na对锂同位素测试的干扰可以忽略。

(3) 本研究适用于沉积岩特别是铝土矿的锂同位素分析。

Development of Separating and Purifying Methods for Lithium Isotope Analysis of Bauxite

ABSTRACT

BACKGROUND:

Bauxite is a product from extreme weathering, an important carrier of lithium. Due to its huge resources, the study on the mechanism and distribution of lithium in bauxite will be beneficial to the prospecting and prediction of bauxite deposits. Efficient and accurate analysis of lithium isotopes is the basis for deep understanding of the lithium enrichment mechanism and distribution driplines in the ores. The bauxite samples are more chemically stable and the sample dissolution process is more complicated. The content of matrix elements such as Al, Na, Ca and K is much higher than that of Li, which makes it difficult to purify Li.

OBJECTIVES:

To establish a method for separating and purifying lithium in bauxite for Li isotope analysis.

METHODS:

On the basis of previous studies, the separation, purification, and measurement scheme of Li in bauxite were investigated by leaching experiment.

RESULTS:

In this scheme, polytetrafluoroethylene exchange column with an inner diameter of 5mm and a column length of 190mm, and AG50W-X12 cation exchange resin were used. 34mL of 0.5mol/L nitric acid was used as the eluent and the final solution was 12mL, resulting in complete purification and recovery of Li in bauxite. At the same time, the method was used to purify the Li in international standard samples, L-SVEC, RGM-2 and GSP-2, and the values of δ7Li were measured by MC-ICP-MS, which were -0.26‰±0.09‰ (2SD, n=3), 3.19‰±0.37‰ (2SD, n=3), -0.78‰±0.22‰ (2SD, n=3). The analytical results were consistent with the previous results obtained by other methods, verifying the reliability of this method. The proposed method was used to purify bauxite standard sample, GBW07182, which yielded δ7Li of 10.16‰±0.21‰ (2SD, n=3).

CONCLUSIONS:

The purification method reduces the amount of eluent used and improves experimental efficiency.

KEY WORDS: bauxite, associated lithium, separation and purification, Li isotope, MC-ICP-MS, standard materials

HIGHLIGHTS

(1) 12mL 0.5mol/L nitric acid as eluent can reach complete purification and recovery of Li.

(2) Na/Li (mass ratio) < 1 after purification and the interference of Na on the analysis of Li isotopes can be ignored.

(3) The proposed method was applicable to Li isotope analysis of sedimentary rocks, especially bauxite.

本文参考文献

[1]

Pistiner J S, Henderson G M. Lithium-isotope fractionation during continental weathering processes[J]. Earth & Planetary Science Letters, 2003, 214(1): 327-339.

[2] Tomascak ,Magna P,Dohmen T. Advances in Lithium Isotope Geochemistry[M] . Berlin: Springer-Verlag, 2016
[3]

Huh Y, Chan L H, Zhang L, et al. Lithium and its isotopes in major world rivers:Implications for weathering and the oceanic budget[J].Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4

[4]

Lemarchand E, Chabaux F, Vigier N, et al. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France)[J].Geochimica et Cosmochimica Acta, 2010, 74(16): 4612-4628. doi: 10.1016/j.gca.2010.04.057

[5]

Liu X M, Rudnick R L, Mcdonough W F, et al. Influence of chemical weathering on the composition of the continental crust:Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts[J]. Geochimica et Cosmochimica Acta, 2013, 115(5): 73-91.

[6]

汪齐连, 赵志琦, 刘丛强, 等. 天然样品中锂的分离及其同位素比值的测定[J]. 分析化学, 2006, 34(6): 764-768. doi: 10.3321/j.issn:0253-3820.2006.06.005

Wang Q L, Zhao Z Q, Liu C Q, et al. Separation and isotopic determination of lithium in natural samples[J].Chinese Journal of Analytical Chemistry, 2006, 34(6): 764-768. doi: 10.3321/j.issn:0253-3820.2006.06.005

[7]

Zack T, Tomascak P B, Rudnick R L, et al. Extremely light Li in orogenic eclogites:The role of isotope fractionation during dehydration in subducted oceanic crust[J]. Earth & Planetary Science Letters, 2003, 208(3): 279-290.

[8]

Brant C, Coogan L A, Gillis K M, et al. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise[J]. Geochimica et Cosmochimica Acta, 2012, 96(none): 272-293.

[9]

Chan L H, Lassiter J C, Hauri E H, et al. Lithium isotope systematics of lavas from the Cook-Austral Islands:Constraints on the origin of HIMU mantle[J].Earth and Planetary Science Letters, 2009, 277(3-4): 433-442. doi: 10.1016/j.epsl.2008.11.009

[10]

Tang Y J, Zhang H F, Deloule E, et al. Slab-derived lithium isotopic signatures in mantle xenoliths from Northeastern North China Craton[J]. Lithos, 2012, 149(1): 79-90.

[11]

Cullen J T, Hurwitz S, Barnes J D, et al. Temperature-dependent variations in mineralogy, major element chemistry and the stable isotopes of boron, lithium and chlorine resulting from hydration of rhyolite:Constraints from hydrothermal experiments at 150 to 350℃ and 25MPa[J].Geochimica et Cosmochimica Acta, 2019, 261: 269-287. doi: 10.1016/j.gca.2019.07.012

[12]

Bottomley D J, Katz A, Chan L H, et al. The origin and evolution of Canadian Shield brines:Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J].Chemical Geology, 1999, 155(3-4): 295-320. doi: 10.1016/S0009-2541(98)00166-1

[13]

Orberger B, Rojas W, Millot R, et al. Stable isotopes (Li, O, H) combined with brine chemistry:Powerful tracers for Li origins in Salar deposits from the Puna Region, Argentina[J].Procedia Earth and Planetary Science, 2015, 13: 307-311. doi: 10.1016/j.proeps.2015.07.072

[14]

李建森, 凌智永, 山发寿, 等. 东昆仑山南、北两侧富锂盐湖成因的氢、氧和锶同位素指示[J]. 湿地科学, 2019, 17(4): 391-398.

Li J S, Ling Z Y, Shan F S, et al. Hydrogen, oxygen and strontium isotopes indication on origin of lithium-rich salt lakes in Eastern Kunlun mountains[J]. Wetland Science, 2019, 17(4): 391-398.

[15]

Magna T, Wiechert U, Halliday A N, et al. New constraints on the lithium isotope compositions of the Moon and terrestrial planets[J].Earth and Planetary Science Letters, 2006, 243(3-4): 336-353. doi: 10.1016/j.epsl.2006.01.005

[16]

Liu M C, McKeegan K D, Goswami J N, et al. Isotopic records in CM hibonites:Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J].Geochimica et Cosmochimica Acta, 2009, 73(17): 5051-5079. doi: 10.1016/j.gca.2009.02.039

[17]

Kunihiro K, Ota T, Nakamura E, et al. Lithium and oxygen isotope compositions of chondrule constituents in the Allende Meteorite[J].Geochimica et Cosmochimica Acta, 2019, 252: 107-125. doi: 10.1016/j.gca.2019.02.038

[18]

Rudnick R L, Tomascak P B, Njo H B, et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J].Chemical Geology, 2004, 212(1-2): 45-57. doi: 10.1016/j.chemgeo.2004.08.008

[19]

Ushikubo T, Kita N T, Cavosie A J, et al. Lithium in Jack Hills zircons:Evidence for extensive weathering of Earth's earliest crust[J]. Earth & Planetary Science Letters, 2008, 272(3): 666-676.

[20]

Sun H, Xiao Y, Gao Y, et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permia-Triassic boundary[J].Proceedings of the National Academy of Sciences, 2018, 115(15): 3782-3787. doi: 10.1073/pnas.1711862115

[21]

Weynell M, Wiechert U, Schuessler J A, et al. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, Northeastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 2017, 213: 155-177. doi: 10.1016/j.gca.2017.06.026

[22]

Kısakürek B, James R H, Harris N B W, et al. Li and δ7Li in Himalayan rivers:Proxies for silicate weathering?[J].Earth and Planetary Science Letters, 2005, 237(3-4): 387-401. doi: 10.1016/j.epsl.2005.07.019

[23]

汪齐连, 刘丛强, 赵志琦, 等. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958. doi: 10.3321/j.issn:1001-8166.2008.09.006

Wang Q L, Liu C Q, Zhao Z Q, et al. Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China[J].Advances in Earth Science, 2008, 23(9): 952-958. doi: 10.3321/j.issn:1001-8166.2008.09.006

[24]

Murphy M J, Porcelli D, Strandmann P, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes[J].Geochimica et Cosmochimica Acta, 2019, 245: 154-171. doi: 10.1016/j.gca.2018.10.024

[25]

Qi H H, Ma C, He Z K, et al. Lithium and its isotopes as tracers of groundwater salinization:A study in the southern coastal plain of Laizhou Bay, China[J].Science of the Total Environment, 2019, 650: 878-890. doi: 10.1016/j.scitotenv.2018.09.122

[26]

张俊文.花岗岩风化过程锂同位素行为及其环境指示意义[D].武汉: 中国地质大学(武汉), 2018.

Zhang J W.Behavior of Lithium Isotopes and Environmental Indications during Granite Weathering[D].Wuhan: China University of Geosciences (Wuhan), 2018.

[27]

叶霖, 潘自平, 程增涛, 等. 贵州修文小山坝铝土矿中镓等伴生元素分布规律研究[J]. 矿物学报, 2008, 28(2): 105-111. doi: 10.3321/j.issn:1000-4734.2008.02.001

Ye L, Pan Z P, Cheng Z T, et al. The regularities of distribution of associated elements in Xiaoshanba bauxite deposit, Guizhou[J].Acta Mineralogica Sinica, 2008, 28(2): 105-111. doi: 10.3321/j.issn:1000-4734.2008.02.001

[28]

于沨, 王登红, 于扬, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 38(3): 354-364.

Yu F, Wang D H, Yu Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364.

[29]

Misra S, Froelich P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS:Application to seawater and natural carbonates[J].Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524-1533. doi: 10.1039/b907122a

[30]

苏嫒娜, 田世洪, 李真真, 等. MC-ICP-MS高精度测定Li同位素分析方法[J]. 地学前缘, 2011, 18(2): 304-314.

Su A N, Tian S H, Li Z Z, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Earth Science Frontiers, 2011, 18(2): 304-314.

[31]

蔺洁, 刘勇胜, 胡兆初, 等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 458-464. doi: 10.3969/j.issn.1007-2802.2016.03.008

Lin J, Liu Y S, Hu Z C, et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 458-464. doi: 10.3969/j.issn.1007-2802.2016.03.008

[32]

王琰, 孙洛新, 张帆, 等. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J]. 岩矿测试, 2013, 32(5): 719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008

Wang Y, Sun L X, Zhang F, et al. Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5): 719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008

[33]

赵悦, 侯可军, 田世洪, 等. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J]. 岩矿测试, 2015, 34(1): 28-39.

Zhao Y, Hou K J, Tian S H, et al. Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28-39.

[34]

Huang K F, You C F, Liu Y H, et al. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1019. doi: 10.1039/b926327f

[35]

袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356-363.

Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363.

[36]

Hoecke K V, Belza J, Croymans T, et al. Single-step chromatographic isolation of lithium from whole rock carbonate and clay for isotopic analysis with multi-collector ICP-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2-26.

[37]

程琤.溶液法大型多接收等离子质谱准确分析地质样品中的Si同位素组成研究[D].西安: 西北大学, 2016.

Cheng C.Determination of Si Isotopic Compositions of Geological Samples Using Solution Nebulization High Resolution Multi-collector Inductively Coupled Plasma Mass Spectrometry[D].Xi'an: Northweat University, 2016.

[38]

Zambardi T, Poitrasson F. Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2010, 35(1): 89-99.

[39]

Nishio Y, Nakai S. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 456(2): 271-281. doi: 10.1016/S0003-2670(02)00042-9

[40]

刘峪菲.钙镁同位素分析方法的改进完善和对西藏拉萨地块中新世火成岩的岩浆源区示踪[D].北京: 中国科学院大学, 2017.

Liu Y F.The Improvements of Calcium and Magesum Isotope Analytical Methods and Their Implications for Tracing the Magma Source of Miocene Magmatic Rocks in the Lhasa Terrane, South Tibet[D].Beijing: University of Chinese Academy of Sciences, 2017.

[41]

张路远, 陈宁, 侯小琳, 等. 大气129I水平对超低129I含量地质样品分析中流程空白的影响[J]. 地球环境学报, 2016, 7(5): 529-536.

Zhang L Y, Chen N, Hou X L, et al. Influence of atmospheric 129I level on procedural blanks in analysis of ultra-low 129I geological samples[J]. Journal of Earth Environment, 2016, 7(5): 529-536.

[42]

吕彩芬, 何红蓼, 周肇茹, 等. 锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金Ⅱ.分析流程空白的降低[J]. 岩矿测试, 2002, 21(1): 7-11. doi: 10.3969/j.issn.0254-5357.2002.01.002

Lü C F, He H L, Zhou Z R, et al. Determination of platinum group elements and gold in geochemical exploration samples by nickel sulfide fire assay-ICP-MS. Ⅱ.Reduction of reagent blank[J]. Rock and Mineral Analysis, 2002, 21(1): 7-11. doi: 10.3969/j.issn.0254-5357.2002.01.002

[43]

Bryant C J, McCulloch M T, Bennett V, et al. Impact of matrix effects on the accurate measurement of Li isotope ratios by inductively coupled plasma mass spectrometry (MC-ICP-MS) under "cold" plasma conditions[J].Journal of Analytical Atomic Spectrometry, 2003, 18: 734-737. doi: 10.1039/B212083F

[44]

苟龙飞, 金章东, 邓丽, 等. 高效分离Li及其同位素的MC-ICP-MS精确测定[J]. 地球化学, 2017, 46(6): 528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

Gou L F, Jin Z D, Deng L, et al. Efficient purification for Li and high-precision and accuracy determination of Li isotopic compositions by MC-ICP-MS[J].Geochimica, 2017, 46(6): 528-537. doi: 10.3969/j.issn.0379-1726.2017.06.003

[45]

史凯, 朱建明, 吴广亮, 等. 地质样品中高精度铬同位素分析纯化技术研究进展[J]. 岩矿测试, 2019, 38(3): 341-353.

Shi K, Zhu J M, Wu G L, et al. A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341-353.

[46]

Rosner M, Ball L, Ehrenbrink B P, et al. A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials[J].Geostandards and Geoanalytical Research, 2007, 31(2): 77-88. doi: 10.1111/j.1751-908X.2007.00843.x

[47]

Seitz H M, Brey G P, Lahaye Y, et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J]. Chemical Geology, 2004, 212(1-2): 0-177.

[48]

Macpherson G L, Phan T T, Stewart B W, et al. Direct determination (without chromatographic separation) of lithium isotopes in saline fluids using MC-ICP-MS:Establishing limits on water chemistry[J].Journal of Analytical Atomic Spectrometry, 2015, 30(7): 1673-1678. doi: 10.1039/C5JA00060B

[49]

Carignan J, Cardinal D, Eisenhauer A, et al. A reflection on Mg, Cd, Ca, Li and Si isotopic measurements and related reference materials[J]. Geostandards & Geoanalytical Research, 2010, 28(1): 139-148.

[50]

Jeffcoate A B, Elliott T, Thomas A, et al. Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards & Geoanalytical Research, 2010, 28(1): 161-172.

[51]

Simons K K, Harlow G E, Brueckner H K, et al. Lithium isotopes in Guatemalan and Franciscan HP-LT rocks:Insights into the role of sediment-derived fluids during subduction[J].Geochimica et Cosmochimica Acta, 2010, 74(12): 3621-3641. doi: 10.1016/j.gca.2010.02.033

[52]

Sun H, Gao Y, Xiao Y, et al. Lithium isotope fractionation during incongruent melting:Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China[J].Chemical Geology, 2016, 439: 71-82. doi: 10.1016/j.chemgeo.2016.06.004

相似文献(共18条)

[1]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[2]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[3]

赵悦, 侯可军, 田世洪, 杨丹, 苏嫒娜. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究. 岩矿测试, 2015, 34(1): 28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

[4]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[5]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[6]

闻静, 张羽旭, 温汉捷, 朱传威, 樊海峰. 特殊地质样品中钼同位素分析的化学前处理方法研究. 岩矿测试, 2020, 39(1): 30-40. doi: 10.15898/j.cnki.11-2131/td.201906190087

[7]

贾宝亭, 刘雪梅, 汤磊, 龙开明. 同位素稀释质谱法测定塑料闪烁体中掺杂锂同位素含量. 岩矿测试, 2006, 25(3): 243-245.

[8]

朱传威, 温汉捷, 樊海峰, 张羽旭, 刘洁, 杨涛, 王光辉. 铅锌矿床地质样品的Ge同位素预处理方法研究. 岩矿测试, 2014, 33(3): 305-311.

[9]

李科, 张琳, 刘福亮, 贾艳琨. 有机化学物质碳氮稳定同位素系列标准物质研制. 岩矿测试, 2020, 39(5): 753-761. doi: 10.15898/j.cnki.11-2131/td.201905290074

[10]

张琳, 刘福亮, 贾艳琨, 刘君. 水中系列氢氧同位素标准物质的研制. 岩矿测试, 2013, 32(5): 7/80-784.

[11]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[12]

梁国立, 强小平, 邓赛文, 王有增, 方明渭, 田寅贞. X射线荧光光谱快速分析铝土矿的方法研究. 岩矿测试, 2001, (4): 305-308.

[13]

田宗平, 彭君, 王干珍, 易晓明, 曹健, 秦毅. 石煤钒矿成分分析标准物质研制. 岩矿测试, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008

[14]

秦德谛, 贺行良, 张媛媛, 李凤, 陈宇峰, 张培玉. 渤海东海海洋沉积物中碳氮稳定同位素标准物质研制. 岩矿测试, 2017, 36(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2017.01.011

[15]

刘文春. 铬天青R分光光度法测定铝土矿中的铍. 岩矿测试, 2010, 29(3): 328-330.

[16]

文加波, 商丹, 宋婉虹, 彭国萍. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较. 岩矿测试, 2011, 30(4): 481-485.

[17]

胡璇, 石磊, 张炜华. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫. 岩矿测试, 2017, 36(2): 124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

[18]

胡璇. 电感耦合等离子体发射光谱法测定铝土矿中的稀土氧化物. 岩矿测试, 2020, 39(6): 954-960. doi: 10.15898/j.cnki.11-2131/td.201911260164

计量
  • PDF下载量(30)
  • 文章访问量(295)
  • HTML全文浏览量(36)
  • 被引次数(0)
目录

Figures And Tables

铝土矿中锂同位素分离提纯方法的建立

严爽, 黄康俊, 付勇, 包志安, 马龙, 龙克树, 叶远谋, 陈蕤, 陈满志