【引用本文】 朱志勇, 朱祥坤, 杨涛, . 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123
ZHU Zhi-yong, ZHU Xiang-kun, YANG Tao. A Fully Automated Chemical Separation and Purification System and Its Application to Isotope Analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123

自动分离提纯系统的研制及其在同位素分析测试中的应用

1. 

中国地质科学院地质研究所, 北京 100037

2. 

南京大学地球科学与工程学院, 江苏 南京 210093

收稿日期: 2019-08-12  修回日期: 2019-11-26  接受日期: 2020-01-15

基金项目: 国家自然科学基金项目(41803021);中国地质调查局中国地质科学院基本科研业务费项目(JYYWF20183102)

作者简介: 朱志勇, 博士, 副研究员(特聘), 主要从事矿床学、地球化学研究。E-mail:zhiyong_zhu@cags.ac.cn

A Fully Automated Chemical Separation and Purification System and Its Application to Isotope Analysis

1. 

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 

School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China

Received Date: 2019-08-12
Revised Date: 2019-11-26
Accepted Date: 2020-01-15

摘要:传统自然流速层析柱法存在离子容易扩散、流速不可控等问题,而元素的自动分离提纯技术可以提高同位素分析效率,压缩在室内提纯化学元素所需的时间。为了降低这种扩散效应、缩短淋洗时间,本文研制了一种自动分离提纯系统,用于元素的自动分离、提纯。该系统由流体切换阀、柱塞泵、自动进样器等部件构成,所有部件与计算机联接,每个部件可单独控制。该系统装配了两根层析柱,通过控制切换阀,可使两者组合使用,甚至能进行逆向淋洗,这与传统自然流速法完全不同。将海水样品分别通过传统自然流速法和本系统进行淋洗提纯,使用加压自动分离提纯系统后,元素(尤其是阴离子)的扩散效应得到明显改善。上样量均为1.0mL时,采用传统自然流速法,硼元素的淋洗峰宽为2.5~3.0mL,而采用本系统淋洗峰宽仅为1.0mL。自然流速法下,不同酸度淋洗液的淋洗速度不同,而本系统的流速精确可控,可确保流速稳定。本文研制的自动分离提纯系统在分离效果和分离能力上均比传统重力法表现优异,在分离元素进行同位素分析方面具有较大的应用前景。

关键词: 自动分离提纯, 同位素分析, 多层析柱, 分配系数

要点

(1) 自动分离提纯系统能有效缓解自然流速下离子在层析柱中拖尾的问题。

(2) 自动分离提纯系统可将多层析柱组合使用。

(3) 传统自然流速法无法逆向淋洗,而自动分离提纯系统可进行逆向淋洗。

A Fully Automated Chemical Separation and Purification System and Its Application to Isotope Analysis

ABSTRACT

BACKGROUND:

Critical problems such as ion diffusion and uncontrollable flow rate exist when applying the traditional natural flow chromatography column method to isotope analysis. The proposed automated chemical purification system improves the efficiency of isotope analysis, and reduces the time required for element purification.

OBJECTIVES:

To develop an automated chemical separation and purification system.

METHODS:

The automated chemical separation and purification system was composed of multi-way valves, plunger pump, autosampler, etc. All of the components were connected using a computer and each of them can be controlled independently. By combining two chromatographic columns multiple functions can be achieved, including reversed elution, which cannot be achieved by the traditional natural flow chromatography column method. In order to investigate the performance of the automated chemical separation and purification system, fresh seawater was purified with the proposed system and the traditional method simultaneously.

RESULTS:

The elution peak of boron had a width of 2.5mL to 3.0mL for the traditional method, but only ca. 1.0mL for the proposed system, if the loading volume of seawater was 1.0mL. The flow rate of the elution depended on the acidity using the traditional natural flow chromatography column method. However, the flow rate could be strictly controlled with the automated chemical separation and purification system.

CONCLUSIONS:

The precisely controlled flow rate of the system makes an easier prediction of the elution time and elution peak. The reversed column technology of the system can be applied to the separation and purification of elements for isotope analysis.

KEY WORDS: automatic separation and purification, isotope analysis, combined chemical columns, partitioning coefficient

HIGHLIGHTS

(1) The automated chemical separation and purification system could minimize the tailing effect of ions on the chromatographic column.

(2) The combined chromatographic columns were applied to the automated chemical separation and purification system.

(3) Reversed elution was achieved with the automated chemical separation and purification system.

本文参考文献

[1]

Ireland T J, Tissot F L H, Yokochi R, et al. Teflon-HPLC:A novel chromatographic system for application to isotope geochemistry and other industries[J]. Chemical Geology, 2013, 357: 203-214.

[2]

Romaniello S J, Field M P, Smith H B, et al. Fully automated chromatographic purification of Sr and Ca for isotopic analysis[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 1906-1912.

[3]

Retzmann A, Zimmermann T, Pröfrock D, et al. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA resin for the isotopic analysis of marine sediments[J]. Analytical and Bioanalytical Chemistry, 2017, 409: 1-18.

[4]

Wuttig K, Townsend A T, van der Merwe P, et al. Critical evaluation of a sea FAST system for the analysis of trace metals in marine samples[J].Talanta, 2019, 197: 653-668.

[5]

Zhu Z Y, Yang T, Zhu X K, et al. Achieving rapid analysis of Li isotopes in high- matrix and low-Li samples with MC-ICP-MS:New developments in sample preparation and mass bias behavior of Li in ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34: 1503-1513.

[6]

Zhu Z Y, Jiang S Y, Yang T, et al. Improvements in Cu-Zn isotope analysis with MC-ICP-MS:A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect[J].International Journal of Mass Spectrometry, 2015, 393: 34-40.

[7]

刘纯瑶, 苟龙飞, 邓丽, 等. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响[J]. 岩矿测试, 2019, 38(1): 35-44.

Liu C Y, Gou L F, Deng L, et al. Effects of Li isotopic fractionation during ion exchange on the measurement accuracy of Li isotopes[J]. Rock and Mineral Analysis, 2019, 38(1): 35-44.

[8]

濮魏, 高剑锋, 凌洪飞, 等. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J]. 南京大学学报(自然科学版), 2005, 41(2): 445-450.

Pu W, Gao J F, Ling H F, et al. Separation method of Rb-Sr, Sm-Nd using DCTA and HIBA[J]. Journal of Nanjing University (Natural Sciences), 2005, 41(2): 445-450.

[9]

尹鹏, 何倩, 何会军, 等. 离子交换树脂法分离沉积物中锶和钕的影响因素研究[J]. 岩矿测试, 2018, 37(4): 379-387.

Yin P, He Q, He H J, et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J]. Rock and Mineral Analysis, 2018, 37(4): 379-387.

[10]

唐索寒, 李津, 梁细荣, 等. 钕同位素比值143Nd/144Nd标准溶液研制[J]. 岩矿测试, 2017, 36(2): 163-170.

Tang S H, Li J, Liang X R, et al. Reference material preparation of 143Nd/144Nd isotope ratio[J]. Rock and Mineral Analysis, 2017, 36(2): 163-170.

[11]

张乐, 任钟元, 丁相礼, 等. 微钻取样-TIMS/MC-ICPMS和LA-MC-ICPMS分析矿物岩石87Sr/86Sr比值的技术比较[J]. 岩矿测试, 2014, 33(5): 615-624.

Zhang L, Ren Z Y, Ding X L, et al. A comparison of microdrilling-TIMS/MC-ICPMS and LA-MC-ICPMS for micro-sample Sr isotope measurement[J]. Rock and Mineral Analysis, 2014, 33(5): 615-624.

[12]

Glennon K J, Osborn J M, Burns J D, et al. Measuring key Sm isotope ratios in irradiated UO2 for use in plutonium discrimination nuclear forensics[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320(2): 405-414.

[13]

Garcia-Valls R, Hrdlicka A, Perutka J, et al. Separation of rare earth elements by high performance liquid chromatography using a covalent modified silica gel column[J]. Analytica Chemica Acta, 2001, 439: 247-253.

[14]

李立武, 刘艳, 王先彬, 等. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J]. 岩矿测试, 2017, 36(3): 222-230.

Li L W, Liu Y, Wang X B, et al. Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J]. Rock and Mineral Analysis, 2017, 36(3): 222-230.

[15]

Schwantes J M, Rundberg R S, Taylor W A, et al. Rapid, high-purity, lanthanide separations using HPLC[J]. Journal of Alloys and Compounds, 2006, 418(1-2): 189-194.

[16]

Datta A, Sivaraman N, Srinivasan T G, et al. Single- stage dual-column HPLC technique for separation and determination of lanthanides in uranium matrix:Application to burnup measurement on nuclear reactor fuel[J].Nuclear Technology, 2013, 182(1): 84-97.

[17]

Liu X M, Li W S. Optimization of lithium isotope analysis in geological materials by quadrupole ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(8): 1708-1717.

[18]

Brugger J, McPhail D C, Black J, et al. Complexation of metal ions in brines:Application of electronic spectroscopy in the study of the Cu(Ⅱ)-LiCl-H2O system between 25℃ and 90℃[J].Geochimica et Cosmochimica Acta, 2001, 65(16): 2691-2708.

[19]

Bjerrum J, Lukes I. The iron(Ⅲ)-chloride system.A study of the stability constants and of the distribution of the tetrachloro species between organic solvents and aqueous chloride solutions[J].Acta Chemica Scandinavica, 1986, A40: 31-40.

[20]

Lee S G, Tanaka T. Determination of Eu isotopic ratio by multi-collector inductively coupled plasma mass spectrometry using a Sm internal standard[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2019, 156: 42-50.

[21]

Lee S G, Asahara Y, Tanaka T, et al. La-Ce and Sm-Nd isotopic systematics of Early Proterozoic leucogranite with tetrad REE pattern[J]. Chemical Geology, 2010, 276(3-4): 360-373.

[22]

Panigrahi M, Grabda M, Kozak D, et al. Liquid-liquid extraction of neodymium ions from aqueous solutions of NdCl3 by phosphonium-based ionic liquids[J]. Separation and Purification Technology, 2016, 171: 263-269.

[23]

Tanaka T, Lee S G, Kim T, et al. Precise determination of 14 REEs in GSJ/AIST geochemical reference materials JCp-1(coral) and JCt-1(giant clam) using isotope dilution ICP-quadrupole mass spectrometry[J]. Geochemical Journal, 2018, 52(1): 75-79.

[24]

Colim A N, do Nascimento P C, Wiethan B A, et al. Reversed-phase high-performance liquid chromatography for the determination of 15 rare earth elements in surface water sample collected in a mining area from Lavras do Sul/RS, Brazil[J]. Chromatographia, 2019, 82(5): 843-856.

[25]

Amr M A, Dawood N D A, Helal A I, et al. Rare earth elements and 143Nd/144Nd isotope ratio measurements using tandem ICP-CRC-MS/MS:Characterization of date palm (Phoenix dactylifera L.)[J].Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1554-1565.

[26]

Lei H L, Yang T, Jiang S Y, et al. A simple two-stage column chromatographic separation scheme for strontium, lead, neodymium and hafnium isotope analyses in geological samples by thermal ionization mass spectrometry or multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Separation Science, 2019, 42(20): 3261-3275.

[27] Golloch A. Handbook of rare earth elements[M] . : De Gruyter Press, 2017
[28]

Small H, Stevens T S, Bauman W C, et al. Novel ion exchange chromatographic method using conductimetric detection[J]. Analytical Chemistry, 1975, 47: 1801-1809.

[29]

Horwitz E P, Bloomquist C A. Chemical separations for super-heavy element searches in irradiated uranium targets[J]. Journal of Inorganic and Nuclear Chemistry, 1975, 37: 425-434.

[30]

Pin C, Zalduegui J. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography:Application to isotopic analyses of silicate rocks[J]. Analytica Chimica Acta, 1997, 339: 79-89.

[31]

Strelow F W E. Distribution coefficients and ion exchange behavior of 46 elements with a macroreticular cation exchange resin in hydrochloric acid[J]. Analytical Chemistry, 1984, 56: 1053-1056.

[32]

Strelow F W E. An ion exchange selectivity scale of cations based on equilibrium distribution coefficients[J].Analytical Chemistry, 1960, 32: 1185-1188.

相似文献(共20条)

[1]

王晓红, , 高玉淑. “地质分析”国际会议及“国际地质分析者协会”简介. 岩矿测试, 2001, (4): 299-300.

[2]

严爽, 黄康俊, 付勇, 包志安, 马龙, 龙克树, 叶远谋, 陈蕤, 陈满志. 铝土矿中锂同位素分离提纯方法的建立. 岩矿测试, 2020, 39(1): 41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275

[3]

王宁, 朱庆增, 谢曼曼, 宋智甲, 王道聪, 贾秋唤, 岑况, 储国强, 孙青. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素. 岩矿测试, 2015, 34(4): 471-479. doi: 10.15898/j.cnki.11-2131/td.2015.04.016

[4]

段桂玲, 段瑞春, 谭娟娟, 顾涛, 邵长生, 路韬. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进. 岩矿测试, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003

[5]

俞祖根, 盛乐民. 闪锌矿中铅同位素比值精确测定时的化学分离方法. 岩矿测试, 1988, (2): 125-127.

[6]

刘凤香, 王雪英. 同位素测定样品中钙和锶的分离. 岩矿测试, 1992, (3): 240-242.

[7]

王刚, 肖应凯. 岩石中硼的提取分离及同位素组成的测定. 岩矿测试, 2000, (3): 169-172.

[8]

赵志琦, 刘丛强, . 河水样品中硼的分离及其同位素组成测定. 岩矿测试, 2002, (4): 279-283.

[9]

富云莲. ^40Ar/^39Ar定年中干扰同位素的质谱校正与低温分离技术. 岩矿测试, 1993, (2): 122-127.

[10]

吴福元, 张宏福, 杨岳衡, 谢烈文. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展. 岩矿测试, 2006, 25(2): 151-158.

[11]

李月芳, , 唐富荣. 氢同位素分析样品制备新方法. 岩矿测试, 2001, (3): 179-182.

[12]

刘美美, 凌媛, 谢曼曼, 孙青. 多环芳烃单体同位素分析进展. 岩矿测试, 2010, 29(1): 64-70.

[13]

李乙雨, 高思登. 砷、磷、硅的低层析分离及微量砷钇矿的系统分析. 岩矿测试, 1985, (1): 78-80.

[14]

刘运德, 甘义群, 余婷婷, 刘存富, 周爱国. 微量水氢氧同位素在线同时测试技术——热转换元素分析 同位素比质谱法. 岩矿测试, 2010, 29(6): 643-647.

[15]

李立武, 王广, 李中平, 杜丽, 曹春辉. 稳定同位素质谱与同位素光谱结合的方法分析氧同位素17O/16O. 岩矿测试, 2013, 32(3): 392-397.

[16]

高建飞, 徐衍明, 范昌福, 胡斌, 李延河. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成. 岩矿测试, 2020, 39(1): 53-58. doi: 10.15898/j.cnki.11-2131/td.201908120128

[17]

尹明, , 吕元琦. 流动注射在线分离预浓集—同位素稀释—电感耦合等离子体质谱测定地质样品中的铕. 岩矿测试, 2002, (2): 93-99.

[18]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[19]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[20]

郑介恒, 胡昭圣, 王俊. 薄层层析法分离重稀土元素. 岩矿测试, 1988, (1): 10-14.

计量
  • PDF下载量(8)
  • 文章访问量(190)
  • HTML全文浏览量(15)
  • 被引次数(0)
目录

Figures And Tables

自动分离提纯系统的研制及其在同位素分析测试中的应用

朱志勇, 朱祥坤, 杨涛