【引用本文】 禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094
YU Lian-ling, GUO Bin, LIU Zhao, et al. Determination of Low-content Cadmium in Sn-rich Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094

电感耦合等离子体质谱法测定高锡地质样品中的痕量镉

湖南省地质测试研究院, 湖南 长沙 410007

收稿日期: 2019-06-27  修回日期: 2019-08-19  接受日期: 2019-10-21

基金项目: 中央引导地方科技发展专项资金“湖南省地质测试研究院大型仪器科研设备购置项目”(2018KT5001)

作者简介: 禹莲玲, 硕士, 工程师, 从事岩矿测试分析。E-mail:yull2010@yeah.net

通信作者: 彭君, 博士, 高级工程师, 主要从事地质实验测试技术方面的应用及研究。E-mail:pengjun6539@126.com

Determination of Low-content Cadmium in Sn-rich Geological Samples by Inductively Coupled Plasma-Mass Spectrometry

Hunan Province Geological Testing Institute, Changsha 410007, China

Corresponding author: PENG Jun, pengjun6539@126.com

Received Date: 2019-06-27
Revised Date: 2019-08-19
Accepted Date: 2019-10-21

摘要:应用电感耦合等离子体质谱法(ICP-MS)测定地质样品中的痕量镉,存在多种质谱干扰,通常采用在线或离线方程进行校正,当样品中含锡较高时,采用传统固定系数校正方程,易导致测定结果有明显偏离,甚至结果出现负数。本文针对含高锡的地质样品,应用ICP-MS测定其中的镉,采用氢氟酸-高氯酸-硝酸敞开酸溶消解、硝酸浸提体系处理样品,通过测定111Cd、113Cd、114Cd同位素,研究了干扰元素Sn、In、Zr、Mo对镉测定的影响。结果表明镉与干扰源浓度变化呈非简单的正相关性。①同质异位素Sn或In产生的干扰增值Δ114Cd/114Sn或113Cd/113In)随干扰源浓度增大逐渐变大,114Sn对114Cd的干扰系数在0.0272~0.0222,113In对113Cd的干扰系数在0.0670~0.0412;②Zr和Mo在测定条件下形成氧化物和多原子复合离子物质对Cd均产生不同程度的质谱干扰。通过测定与样品中干扰源浓度相近的单一标准溶液产生的Cd干扰值,经在线修正干扰系数(γ),建立了精确的校正方程。该方法经标准物质验证,准确度高,相对标准偏差在6.57%~9.94%(n=7),方法检出限为0.03mg/kg,达到了地质分析检测要求,为高锡地质样品中的痕量镉分析提供了依据。

关键词: 地质样品, , , 氢氟酸-高氯酸-硝酸酸溶, 在线修正, 电感耦合等离子体质谱法

要点

(1) 建立了三酸敞开消解、硝酸浸提体系,利于ICP-MS测定痕量镉。

(2) 总结了镉与锡、铟、锆和钼干扰元素的关系,实现在线方程修正。

(3) 同时测定111Cd、113Cd、114Cd同位素,使镉测定结果更加准确可靠。

Determination of Low-content Cadmium in Sn-rich Geological Samples by Inductively Coupled Plasma-Mass Spectrometry

ABSTRACT

BACKGROUND:

There are many kinds of mass spectral interferences when inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine trace amounts of cadmium in geological samples. Usually, on-line or off-line equations are used for correction. When the sample has high tin content, traditional fixed coefficient correction equations can easily lead to significant deviations in the results, and even negative results.

OBJECTIVES:

To develop a method for the determination of low-level Cd in high-Sn samples.

METHODS:

The system of hydrofluoric acid-perchloric acid-nitric acid digestion and nitric acid compound solvent were applied to analyze the cadmium isotopes, 111Cd, 113Cd and 114Cd for high-tin samples. The influence of interference elements, Sn, In, Zr and Mo on the determination of cadmium was studied.

RESULTS:

Results showed that there was a non-simple positive correlation between cadmium concentration and the concentration variations of interference sources. The interference increment value increased gradually with the concentration of interference elements. The interference coefficient of 114Sn on 114Cd ranges from 0.0272 to 0.0222, and that of 113In on 113Cd was 0.0670 to 0.0412. Cadmium suffers from different degrees of Zr and Mo based oxide/hydroxide mass spectrometry interferences. By measuring the cadmium interference value produced by a single standard solution close to the concentration of the interference source in the sample, the interference coefficient (γ) was corrected on-line to establish an accurate correction equation. The method has been verified by a series of certified standard substances with high accuracy and precision of 6.57%-9.94% (n=7). The method had the Cd detection limit of 0.03mg/kg, which met the requirements of geological sample analysis.

CONCLUSIONS:

The method provides a feasible basis for the determination of low-content cadmium in high-Sn geological samples.

KEY WORDS: geological samples, tin, cadmium, hydrofluoric acid-perchloric acid-nitric acid dissolution, on-line correction, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) The open digestion system of three acids and nitric acid extraction were established, which was beneficial to the determination of low-content cadmium by ICP-MS.

(2) On-line equation correction was realized based on the relationship between cadmium and interference elements such as tin, indium, zirconium and molybdenum.

(3) Simultaneous determination of 111Cd, 113Cd and 114Cd isotopes made the analytical results of cadmium more accurate and reliable.

本文参考文献

[1]

《岩石矿物分析》编委会. 岩石矿物分析(第四版第二分册)[M] . 北京: 地质出版社, 2011: 84-85.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis (The Fourth Edition:Vol.Ⅱ)[M] . Beijing: Geological Publishing House, 2011: 84-85.
[2]

刘香英, 袁建, 崔建勇, 等. 改进的原子吸收法测定土壤样品中的6种重金属元素[J]. 世界核地质科学, 2019, 36(2): 109-115. doi: 10.3969/j.issn.1672-0636.2019.02.007

Liu X Y, Yuan J, Cui J Y, et al. Determination of 6 heavy metal elements in soil samples by improved atomic absorption spectrometry[J].World Nuclear Geoscience, 2019, 36(2): 109-115. doi: 10.3969/j.issn.1672-0636.2019.02.007

[3]

朱炳文, 董善果, 高琳科, 等. 石墨炉原子吸收光谱法测定区域地球化学勘查样品中镉的含量[J]. 安徽化工, 2016, 42(3): 90-93. doi: 10.3969/j.issn.1008-553X.2016.03.032

Zhu B W, Dong S G, Gao L K, et al. Determination of cadmium in regional geochemical exploration samples by graphite furnace atomic absorption spectrometry[J].Anhui Chemical Industry, 2016, 42(3): 90-93. doi: 10.3969/j.issn.1008-553X.2016.03.032

[4]

邵文军, 张激光, 刘晶晶, 等. 石墨炉原子吸收光谱法测定岩石和土壤中痕量镉[J]. 岩矿测试, 2008, 27(4): 310-312. doi: 10.3969/j.issn.0254-5357.2008.04.017

Shao W J, Zhang J G, Liu J J, et al. Determination of trace cadmium in rocks and soil by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 310-312. doi: 10.3969/j.issn.0254-5357.2008.04.017

[5]

董洪霞, 柏婷婷, 李子璐, 等. 过氧化氢氧化甲基紫催化动力学光度法测定土壤和大米中痕量镉[J]. 上饶师范学院学报, 2018, 38(3): 56-62. doi: 10.3969/j.issn.1004-2237.2018.03.011

Dong H X, Bo T T, Li Z L, et al. Catalytic kinetic spectrophotometric determination of trace cadmium in soil and rice by methyl violet catalyzed by hydrogen peroxide[J].Journal of Shangrao Normal University, 2018, 38(3): 56-62. doi: 10.3969/j.issn.1004-2237.2018.03.011

[6]

武明丽, 黄浩. 氢化物发生原子荧光光谱法测定土壤样品中镉[J]. 山东化工, 2011, 40(8): 75-77. doi: 10.3969/j.issn.1008-021X.2011.08.030

Wu M L, Huang H. Determination of cadmium in soil samples by hydride generation atomic fluorescence spectrometry[J].Shandong Chemical Industry, 2011, 40(8): 75-77. doi: 10.3969/j.issn.1008-021X.2011.08.030

[7]

郑波, 刘潇威, 穆莉, 等. 固体直接进样-原子荧光法测定土壤中的镉[J]. 农业环境科学学报, 2016, 35(5): 1016-1020.

Zheng B, Liu X W, Mu L, et al. Determination of cadmium in soil by solid direct sampling atomic fluorescence method[J]. Journal of Agro-Environmental Science, 2016, 35(5): 1016-1020.

[8]

赖冬梅, 邓天龙. 抗坏血酸-磺胺增效氢化物发生-原子荧光光谱法测定土壤中镉[J]. 分析化学, 2010, 38(4): 542-546.

Lai D M, Deng T L. Determination of cadmium in soil by ascorbic acid-sulfonamide-hydride generation-atomic fluorescence spectrometry[J]. Analytical Chemistry, 2010, 38(4): 542-546.

[9]

吴育廉, 廖艳, 杨捷, 等. 顺序注射-氢化物发生-原子荧光光谱法测定马氏珠母贝中镉的含量[J]. 理化检验(化学分册), 2014, 50(10): 1312-1314.

Wu Y L, Liao Y, Yang J, et al. Determination of cadmium in musculus marchieri by sequential injection-hydride generation-atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2014, 50(10): 1312-1314.

[10]

张更宇, 刘伟, 崔世荣, 等. 分类消解-电感耦合等离子体原子发射光谱法测定环境土壤中15种金属元素的含量[J]. 理化检验(化学分册), 2018, 54(4): 428-432.

Zhang G Y, Liu W, Cui S R, et al. Determination of 15 metal elements in soil by inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4): 428-432.

[11]

朱聪玲, 冯芳敏, 杨延瑛, 等. 电感耦合等离子体发射光谱法测定土壤9种重金属元素[J]. 青海环境, 2018, 28(3): 151-153. doi: 10.3969/j.issn.1007-2454.2018.03.007

Zhu C L, Feng F M, Yang Y Y, et al. Determination of 9 heavy metal elements in soil by inductively coupled plasma emission spectrometry[J].Journal of Qinghai Environment, 2018, 28(3): 151-153. doi: 10.3969/j.issn.1007-2454.2018.03.007

[12]

李敏, 胡艳丽, 庞春燕, 等. ICP-AES和ICP-MS法测定不同环境样品中重金属镉的比较[J]. 安徽农业科学, 2016, 44(12): 87-88. doi: 10.3969/j.issn.0517-6611.2016.12.028

Li M, Hu Y L, Pang C Y, et al. Determination of heavy metal cadmium in different environmental samples by ICP-AES and ICP-MS[J].Journal of Anhui Agricultural Sciences, 2016, 44(12): 87-88. doi: 10.3969/j.issn.0517-6611.2016.12.028

[13]

王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574-580.

Wang L, Yang L F, Tan X Z, et al. Determination of cadmium in environmental geological samples by inductively coupled plasma-mass spectrometry with desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574-580.

[14]

罗策, 雷小燕, 黄永红, 等. 电感耦合等离子体质谱法测定锆及锆合金中镉含量的质谱干扰分析[J]. 分析科学学报, 2016, 32(4): 515-519.

Luo C, Lei X Y, Huang Y H, et al. Determination of cadmium in zirconium and zirconium alloys by ICP-MS[J]. Journal of Analytical Science, 2016, 32(4): 515-519.

[15]

Lashari A A, Kazi T G, Ali J, et al. Evaluation of sequential extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar Coalfield, Pakistan[J].Atomic Spectroscopy, 2018, 39(5): 203-209.

[16]

Oral E V. Comparison of two sequential extraction procedures for trace metal partitioning in ore samples from the Keban Region in Elazig, Turkey[J].Atomic Spectroscopy, 2018, 39(5): 198-202.

[17]

李娜, 刘冰心, 张丽, 等. 热水解沉淀法分离基体钛-ICP-MS法测定高纯钛中痕量元素[J]. 分析试验室, 2012, 31(12): 9-12.

Li N, Liu B X, Zhang L, et al. Determination of trace elements in high purity titanium by thermal hydrolysis and precipitation-ICP-MS method[J]. Chinese Joumal of Analysis Laboratory, 2012, 31(12): 9-12.

[18]

魏建军, 郎春燕, 林龙飞, 等. 真空蒸馏分离-电感耦合等离子体质谱法测定高纯碲中9种杂质元素[J]. 分析化学, 2013, 41(9): 1454-1457.

Wei J J, Lang C Y, Lin L F, et al. Determination of 9 impurity elements in high purity tellurium by vacuum distillation separation and inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(9): 1454-1457.

[19]

马晓龙, 李刚, 李艳, 等. 碰撞反应池-电感耦合等离子体质谱法测定锆基合金中痕量镉[J]. 理化检验(化学分册), 2014, 50(3): 345-348.

Ma X L, Li G, Li Y, et al. Determination of trace cadmium in zirconium-based alloys by impact reactor-inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2014, 50(3): 345-348.

[20]

于悦. 微波消解-电感耦合等离子体质谱法测定环境土壤中6种常量金属元素[J]. 化学分析计量, 2018, 27(4): 85-88. doi: 10.3969/j.issn.1008-6145.2018.04.021

Yu Y. Determination of 6 major metal elements in environmental soil by microwave digestion and inductively coupled plasma mass spectrometry[J].Chemical Analysis and Meterage, 2018, 27(4): 85-88. doi: 10.3969/j.issn.1008-6145.2018.04.021

[21]

Nagar B K, Saxena M K, Tomar B S, et al. Quantification of trace and ultra-trace impurities in U-Zr alloy by inductively couple plasma time of flight mass spectrometry (ICP-TOF-MS) after simultaneous separation of U and Zr[J]. Atomic Spectroscopy, 2018, 39(5): 185-192.

[22]

侯鹏飞, 江冶, 曹磊, 等. 无高氯酸常压酸溶-ICP-MS法同时测定土壤中的As, Cd, Pb, Cr, Zn, Cu, Ni[J]. 地质学刊, 2019, 43(1): 166-170. doi: 10.3969/j.issn.1674-3636.2019.01.024

Hou P F, Jiang Y, Cao L, et al. Determination of As, Cd, Pb, Cr, Zn, Cu and Ni in soil by ICP-MS method without perchloric acid[J].Journal of Geology, 2019, 43(1): 166-170. doi: 10.3969/j.issn.1674-3636.2019.01.024

[23]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正[J]. 岩矿测试, 2008, 27(3): 197-200. doi: 10.3969/j.issn.0254-5357.2008.03.009

Li G, Cao X Y. Interference and its elimination in determination of germanium and cadmium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2008, 27(3): 197-200. doi: 10.3969/j.issn.0254-5357.2008.03.009

[24]

孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030.

Sun Z Y, Dong L M, He Y T, et al. Interference and elimination method of Sc, Ga, Ge, In, Cd, Tl in geological samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(9): 1026-1030.

[25]

赵小龙, 燕娜, 侍金敏, 等. 微波消解-电感耦合等离子体质谱法测定镍精矿中Ga, Ge, Se, Cd, In, Te, La和Tl[J]. 理化检验(化学分册), 2017, 53(9): 1031-1035.

Zhao X L, Yan N, Shi J M, et al. Determination of Ga, Ge, Se, Cd, In, Te, La and Tl in nickel concentrate by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9): 1031-1035.

[26]

李晓敬, 边朋沙, 金倩, 等. 高压微波消解-电感耦合等离子体质谱法测定地质样品中分散元素镓铟铊锗碲镉[J]. 冶金分析, 2019, 39(4): 38-44.

Li X J, Bian B S, Jin Q, et al. Determination of dispersed element gallium indium thallium germanium tellurium cadmium in geological samples by high pressure microwave digestion inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(4): 38-44.

[27]

乐淑葵, 段永梅. 电感耦合等离子体质谱法(ICP-MS)测定土壤中的重金属元素[J]. 中国无机分析化学, 2015, 5(3): 16-19. doi: 10.3969/j.issn.2095-1035.2015.03.005

Le S K, Duan Y M. Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3): 16-19. doi: 10.3969/j.issn.2095-1035.2015.03.005

[28]

常学东. ICP-MS方法测定镉的干扰现象分析[J]. 新疆有色金属, 2011, (6): 47-49.

Chang X D. Analysis of interference phenomena in determination of cadmium by ICP-MS method[J]. Xinjiang Nonferrous Metals, 2011, (6): 47-49.

[29]

王妃, 王德淑, 汤德能, 等. 浅析锡对电感耦合等离子体质谱法测定镉的干扰[J]. 中国无机分析化学, 2015, 5(2): 12-18. doi: 10.3969/j.issn.2095-1035.2015.02.003

Wang F, Wang D S, Tang D N, et al. The interference of tin on the determination of cadmium by inductively coupled plasma mass spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 12-18. doi: 10.3969/j.issn.2095-1035.2015.02.003

[30]

范凡, 温宏利, 屈文俊, 等. 王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J]. 岩矿测试, 2009, 28(4): 333-336. doi: 10.3969/j.issn.0254-5357.2009.04.006

Fan F, Wen H L, Qu W J, et al. Determination of arsenic, antimony, bismuth, silver, cadmium and indium in gological samples by inductively coupled plasma-mass spectrometry with aqua regia sample digestion[J]. Rock and Mineral Analysis, 2009, 28(4): 333-336. doi: 10.3969/j.issn.0254-5357.2009.04.006

[31]

张保科, 温宏利, 王蕾, 等. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2011, 30(6): 737-744. doi: 10.3969/j.issn.0254-5357.2011.06.016

Zhang B K, Wen H L, Wang L, et al. Quantification of multi elements in geological samples by inductively coupled pasma-mass spectrometry with pressurized decomposition-hydrochloric acid extraction[J]. Rock and Mineral Analysis, 2011, 30(6): 737-744. doi: 10.3969/j.issn.0254-5357.2011.06.016

[32]

宋威, 胡长春. 电感耦合等离子体质谱法测定土壤中的镉[J]. 广州化工, 2018, 46(6): 95-96. doi: 10.3969/j.issn.1001-9677.2018.06.035

Song W, Hu C C. Determination of cadmium in soil by inductively coupled plasma mass spectrometry[J].Guangzhou Chemical Industry, 2018, 46(6): 95-96. doi: 10.3969/j.issn.1001-9677.2018.06.035

相似文献(共19条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

郝原芳, 刘新, 宋丽华, 李丽君, 徐英奎. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡. 岩矿测试, 2016, 35(4): 378-383. doi: 10.15898/j.cnki.11-2131/td.2016.04.007

[5]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[6]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[7]

王岚, 杨丽芳, 谭西早, 武朝辉. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉. 岩矿测试, 2017, 36(6): 574-580. doi: 10.15898/j.cnki.11-2131/td.201703130032

[8]

阳国运, 唐裴颖, 张洁, 战大川, 覃盛, 何雨珊. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

[9]

曾惠芳, 周绍箕. 三烷基氧膦纤维素富集—感耦等离子体质谱法测定地质样品中钨钼锡. 岩矿测试, 1994, (4): 259-263.

[10]

赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358.

[11]

盛献臻, 张汉萍, 李展强, 李海萍, 何光涛. 电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼. 岩矿测试, 2010, 29(4): 383-386.

[12]

王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445.

[13]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[14]

张保科, 温宏利, 王蕾, 马生凤, 巩爱华. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2011, 30(6): 737-744.

[15]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[16]

张保科, 王蕾, 马生凤, 温宏利, 巩爱华. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正. 岩矿测试, 2012, 31(2): 253-257.

[17]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[18]

段桂玲, 段瑞春, 谭娟娟, 顾涛, 邵长生, 路韬. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进. 岩矿测试, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003

[19]

王琳, 唐志中, 来新泽, 连文莉, 胡家祯, 周岚. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金. 岩矿测试, 2013, 32(3): 420-426.

计量
  • PDF下载量(24)
  • 文章访问量(214)
  • HTML全文浏览量(21)
  • 被引次数(0)
目录

Figures And Tables

电感耦合等离子体质谱法测定高锡地质样品中的痕量镉

禹莲玲, 郭斌, 柳昭, 赵昕, 戴长文, 彭君