【引用本文】 王大娟, 杨根兰, 向喜琼, 等. 邻菲啰啉分光光度法测定红层砂岩中Fe(Ⅱ)和全铁的方法探讨[J]. 岩矿测试, 2020, 39(2): 216-224. doi: 10.15898/j.cnki.11-2131/td.201906200088
WANG Da-juan, YANG Gen-lan, XIANG Xi-qiong, et al. Determination of Fe(Ⅱ) and Total Iron in Red Sandstone by o-phenanthroline Spectrophotometry[J]. Rock and Mineral Analysis, 2020, 39(2): 216-224. doi: 10.15898/j.cnki.11-2131/td.201906200088

邻菲啰啉分光光度法测定红层砂岩中Fe(Ⅱ)和全铁的方法探讨

1. 

贵州大学资源与环境工程学院, 贵州 贵阳 550025

2. 

贵州大学自然资源部喀斯特环境与地质灾害重点实验室, 贵州 贵阳 550025

收稿日期: 2019-06-20  修回日期: 2019-08-25  接受日期: 2019-10-21

基金项目: 贵州省科技平台及人才团队计划项目(黔科合平台人才[2017]5402号);贵州省科学技术项目(黔科合J字2244);贵州省专业学位研究生课程案例库[黔教合YJSCXJH(2018)089]

作者简介: 王大娟, 硕士研究生, 地质工程专业。E-mail:876756269@qq.com

通信作者: 杨根兰, 副教授, 博士, 硕士生导师, 主要从事岩体稳定及环境地质工程的研究。E-mail:yanggenlan@163.com

Determination of Fe(Ⅱ) and Total Iron in Red Sandstone by o-phenanthroline Spectrophotometry

1. 

School of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China

2. 

Key Laboratory of Karst Environment and Geological Disaster, Ministry of Natural Resources, Guizhou University, Guiyang 550025, China

Corresponding author: YANG Gen-lan, yanggenlan@163.com

Received Date: 2019-06-20
Revised Date: 2019-08-25
Accepted Date: 2019-10-21

摘要:红层砂岩是丹霞地貌区的一套陆相或浅水湖相沉积碎屑岩,准确分析红层砂岩中Fe(Ⅱ)和Fe(Ⅲ)在风化过程中的氧化还原关系,可作为该岩块风化程度以及深度的划分依据。在应用邻菲啰啉分光光度法测定铁含量过程中,Fe(Ⅱ)极易被氧化而导致结果偏低,有效防止氧化作用是准确测量Fe(Ⅱ)和Fe(Ⅲ)含量的重点。本文利用Fe(Ⅱ)与邻菲啰啉形成有色络合物的特点,在红层砂岩样品中滴加适量显色剂后用氢氟酸-稀硫酸溶解,取同一溶清液分别经过盐酸羟胺还原、邻菲啰啉显色、乙酸-乙酸铵缓冲液调节pH等步骤后,在分光光度计下测定微量Fe(Ⅱ)和全铁含量。该分析方法测定Fe(Ⅱ)的检出限为0.002%,RSD(n=8)小于2%,加标回收率为92.6%~94.7%。利用该分析方法测定赤水丹霞地貌区红层砂岩中Fe(Ⅱ)含量在0.01%~0.1%,全铁为0.7%~1.5%,差减法计算得Fe(Ⅲ)含量在0.7%~1.5%,测定结果与X射线荧光光谱法、重络酸钾滴定法一致。本方法采用显色剂和氢氟酸-稀硫酸溶解,能有效保存砂岩中原生Fe(Ⅱ),使用同一溶清液既能测定全铁,也能准确测定Fe(Ⅱ),为分析红层砂岩中各类铁含量提供了一种简单、准确的分析方法。

关键词: 红层砂岩, Fe(Ⅱ), 全铁, 酸溶, 分光光度法, 邻菲啰啉

要点

(1) 测定红层砂岩中铁的含量,关键是防止Fe(Ⅱ)氧化作用。

(2) 探讨了显色剂、氢氟酸和稀硫酸在溶解试样中对原生Fe(Ⅱ)的保护作用。

(3) 测定了赤水丹霞地貌区红层砂岩中的微量Fe(Ⅱ)和全铁含量。

Determination of Fe(Ⅱ) and Total Iron in Red Sandstone by o-phenanthroline Spectrophotometry

ABSTRACT

BACKGROUND:

Red bed sandstone is a set of continental or shallow lake clastic rocks in the Danxia landform. Accurate determination of Fe(Ⅱ) and Fe(Ⅲ) in red bed sandstone that indicates the redox relationship during weathering can serve as the dividing basis of weathering degree and depth of the block. During the determination of iron content by phenanthroline spectrophotometry, Fe(Ⅱ) is easily oxidized and the result is a lower value than it should be. Effective prevention of oxidation is the focus of accurate measurement of Fe(Ⅱ) and Fe(Ⅲ) content.

OBJECTIVES:

To explore the preservation method of Fe(Ⅱ) during dissolution and establish a spectrophotometric method for the determination of Fe(Ⅱ) and total iron in red sandstone.

METHODS:

Color reagents were added in the samples, and the samples were dissolved by hydrofluoric acid and dilute sulfuric acid, in a constant temperature water bath at 90℃. Hydroxylamine hydrochloride was used as a reducing agent, o-phenanthroline was used as a chromogenic agent, pH was adjusted by acetate-ammonium acetate buffer, and trace Fe(Ⅱ) and total iron were determined by spectrophotometer.

RESULTS:

The detection limit of Fe(Ⅱ) was 0.002%, relative standard deviation (RSD, n=8) was less than 2%, and the standard recovery was between 92.6% and 94.7%. The Fe(Ⅱ) content of red sandstone in the Danxia landform area of Chishui was determined by this analysis method. The content of Fe(Ⅱ) ranged from 0.01% to 0.1%, the total iron content was 0.7%-1.5%, and the content of Fe(Ⅲ) calculated by subtraction was 0.7%-1.5%. The measurement results were consistent with those of X-ray fluorescence spectrometry and potassium complexate titration method.

CONCLUSIONS:

This method uses developer and hydrofluoric acid-dilute sulfuric acid to dissolve the samples, which can effectively preserve the original Fe(Ⅱ) in sandstone. The same solution can be used for the determination of both total iron and Fe(Ⅱ) which provides a simple and accurate analysis method for various types of iron content in red bed sandstone.

KEY WORDS: red sandstone, Fe (Ⅱ), total iron, acid dissolution, spectrophotometry, o-phenanthroline

HIGHLIGHTS

(1) The key for determination of iron content in red bed sandstone was to prevent Fe(Ⅱ) oxidation.

(2) The protective effect of color reagent, hydrofluoric acid and dilute sulfuric acid on primary Fe(Ⅱ) in dissolved samples was discussed.

(3) The contents of trace Fe(Ⅱ) and total iron in red sandstone in Danxia geomorphological area of Chishui were determined.

本文参考文献

[1]

朱诚. 对用Fe3+/F2+探讨庐山地区第四纪古温度的讨论[J]. 地质论评, 1994, (3): 216-220.

Zhu C. The quaternary paleotemperature in Lushan area is discussed by Fe3+/F2+[J].Geological Review, 1994, (3): 216-220.

[2]

迟振卿, 闵隆瑞, 武志军, 等. 河北阳原盆地井儿洼钻孔岩心氧化铁变化的古环境记录[J]. 地质通报, 2002, 21(10): 632-637.

Chi Z Q, Min L R, Wu Z J, et al. Paleoenvironmental records of changes in core iron oxide in Jingerwa, Yangyuan Basin, Hebei Province[J]. Geological Bulletin of China, 2002, 21(10): 632-637.

[3]

张飞飞, 彭乾云, 朱祥坤, 等. 湖北古城锰矿Fe同位素特征及其古环境意义[J]. 地质学报, 2013, 87(9): 1411-1418.

Zhang F F, Peng Q Y, Zhu X K, et al. Fe isotopic characteristics and paleoenvironmental significance of Gucheng manganese mine, Hubei Province[J]. Acta Geologica Sinica, 2013, 87(9): 1411-1418.

[4]

肖育雄, 黎晏彰, 丁竑瑞, 等.湖南新宁崀山丹霞红层天然半导体矿物的矿物学特征研究[J/OL].北京大学学报(自然科学版): 1-11[2019-08-12].https://doi.org/10.13209/j.0479-8023.2019.065.

Xiao Y X, Li Y Z, Ding X R, et al.Mineralogical characteristics of natural semiconductor minerals in Danxia red layer, Langshan, Xinning, Hunan[J/OL]. Acta Scientiarum Naturalium Universitatis Pekinensis: 1-11[2019-08-12]. https://doi.org/10.13209/j.0479-8023.2019.065.

[5]

苏洋. 邻菲罗啉光度法测定钒铝合金中铁[J]. 冶金分析, 2019, 39(2): 77-81.

Su Y. Determination of iron in vanadium aluminum alloy by o-phenanthroline spectrophotometry[J]. Metallurgical Analysis, 2019, 39(2): 77-81.

[6]

陈建津, 陈嘉敏, 张志强, 等. 邻菲啰啉分光光度法测定白砂糖中铁含量[J]. 现代食品, 2016, (12): 79-81.

Chen J J, Chen J M, Zhang Z Q, et al. Determination of iron in sugar by o-phenanthroline spectrophotometry[J]. Modern Food, 2016, (12): 79-81.

[7]

祁极冰, 刘有智, 罗莹, 等. 邻菲啰啉分光光度法测定络合铁脱硫液中铁的含量[J]. 现代化工, 2016, 36(1): 187-190.

Qi J B, Liu Y Z, Luo Y, et al. Determination of iron in complex iron desulfurization solution by o-phenanthroline spectrophotometry[J]. Modern Chemical Industry, 2016, 36(1): 187-190.

[8]

徐勋达, 胡璐, 余国贤, 等. 改进邻菲啰啉分光光度法测定络合铁中亚铁含量[J]. 江汉大学学报(自然科学版), 2016, 44(1): 48-51.

Xu X D, Hu L, Yu G X, et al. Improving the spectrophotometry for the determination of iron content in Central Asia with complex iron[J].Journal of Jianghan University (Natural Science Edition), 2016, 44(1): 48-51.

[9]

尹辉, 施鸿金, 龙春月, 等. 邻二氮菲分光光度法测定几种日常食物中的铁含量[J]. 科教导刊, 2015, (3): 36.

Yin H, Shi H J, Long C Y, et al. Determination of iron in several daily foods by phenanthrene spectrophotometry[J]. The Guide of Science and Education, 2015, (3): 36.

[10]

傅翠梨, 陈文瑞, 郭阿明, 等. 邻菲啰啉光度法测定高岭土中可溶铁和非可溶铁[J]. 岩矿测试, 2012, 31(4): 621-626.

Fu C L, Chen W R, Guo A M, et al. Determination of soluble iron and non-soluble iron in kaolin by o-phenanthroline spectrophotometry[J]. Rock and Mineral Analysis, 2012, 31(4): 621-626.

[11]

韩林宝, 代群威, 党政, 等. 厌氧环境下邻菲罗啉分光光度法测定纤维水镁石中Fe(Ⅱ)与Fe(Ⅲ)[J]. 冶金分析, 2018, 38(5): 25-29.

Han L B, Dai Q W, Dang Z, et al. Determination of Fe(Ⅱ) and Fe(Ⅲ) in fiber brucite by o-phenanthroline spectrophotometry in anaerobically environment[J]. Metallurgical Analysis, 2018, 38(5): 25-29.

[12]

吴永明, 陶武, 黄飞雪, 等. 邻菲罗啉示差分光光度法测定铁矿石中全铁含量[J]. 化学试剂, 2018, 40(1): 45-48.

Wu Y M, Tao W, Huang F X, et al. Determination of total iron in iron ore by o-phenanthroline differential spectrophotometry[J]. Chemical Reagents, 2018, 40(1): 45-48.

[13]

李令, 朱云勤, 张菊, 等. 邻二氮菲分光光度法测定赤泥和石灰石混匀度[J]. 岩矿测试, 2009, 28(4): 394-396.

Li L, Zhu Y Q, Zhang J, et al. Determination of mixing degree of red mud and limestone by phenanthrene spectrophotometry[J]. Rock and Mineral Analysis, 2009, 28(4): 394-396.

[14]

冉广芬, 马海州. 分光光度法同时测定岩盐中微量Fe2+和Fe3+的研究[J]. 盐湖研究, 2008, (1): 22-26.

Ran G F, Ma H Z. Simultaneous determination of trace Fe2+ and Fe3+ in rock salt by spectrophotometry[J]. Journal of Salt Lake Research, 2008, (1): 22-26.

[15]

潘涵香, 胡超涌, 王红梅, 等. 邻二氮菲分光光度法测定碳酸盐相中微量亚铁[J]. 岩矿测试, 2007, 26(3): 198-200.

Pan H X, Hu C Y, Wang H M, et al. Determination of trace ferrous in carbonate phase by o-phenanthrene spectrophotometry[J]. Rock and Mineral Analysis, 2007, 26(3): 198-200.

[16]

姚进一, 白晓龙, 花海蓉, 等. 如何提高分光光度分析的准确度[J]. 中国环境监测, 2017, 33(2): 116-121.

Yao J Y, Bai X L, Hua H R, et al. How to improve the accuracy of spectrophotometry[J]. Environmental Monitoring in China, 2017, 33(2): 116-121.

[17]

Alexandre S.Anastácio, Harris B, Yoo H I, et al. Limitations of the ferrozine method for quantitative assay of mineral systems for ferrous and total iron[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 0-5008.

[18]

Remucal C K, Sedlak D L. The role of iron coordination in the production of reactive oxidants from ferrous iron oxidation by oxygen and hydrogen peroxide[J].ACS Symposium Series, 2011, 1071: 177-197.

[19]

武汉大学. 分析化学[M] (第四版) . 北京: 高等教育出版社, 2000

Wuhan University. Analytical Chemistry[M] (The Fourth Edition) . Beijing: Higher Education Press, 2000
[20]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[21]

Yin X, Wang X, Chen S, et al. Trace element determination in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J]. Atomic Spectroscopy, 2018, 39(4): 137-141.

[22]

Oral E V. Comparison of two sequential extraction procedures for trace metal partitioning in ore samples from the Keban Region in Elazig, Turkey[J].Atomic Spectroscopy, 2018, 39(5): 198-202.

[23]

温建淳. 在高铁背景下二价铁含量的测定方法浅析[J]. 科技创新导报, 2017, 14(30): 103-107.

Wen J C. Analysis on the determination method of divalent iron content under the background of high iron[J]. Science and Technology Innovation Herald, 2017, 14(30): 103-107.

[24]

Tamura H, Goto K, Yotsuyanagi T, et al. Spectro- photometric determination of iron(Ⅱ) with 1, 10-phenanthroline in the presence of large amounts of iron(Ⅲ)[J].Talanta, 1974, 21(4): 314-318.

[25]

张会堂. 邻菲啰啉助溶保护-容量法测定电气石中的氧化亚铁[J]. 山东国土资源, 2018, 34(6): 80-83.

Zhang H T. Determination of the ferrous oxide in the tourmaline by the solubility protection-capacity method of the o-phenanthrene[J]. Shandong Land and Resources, 2018, 34(6): 80-83.

[26]

杨朋兵, 林兴, 李祥, 等. 邻菲罗啉分光光度法测定含EDTA溶液中Fe3+ 的改进[J]. 实验室研究与探索, 2016, 35(12): 22-25.

Yang P B, Lin X, Li X, et al. Improvement in determination of Fe3+ in EDTA-containing solution by o-phenanthroline spectrophotometry[J]. Research and Exploration of Laboratory, 2016, 35(12): 22-25.

[27]

曾子琦, 李欣, 李跑, 等. 邻二氮菲比色法测定铁含量的条件优化研究[J]. 广州化工, 2018, 46(14): 77-80.

Zeng Z Q, Li X, Li P, et al. Study on the optimization of the conditions for the determination of iron content by o-phenanthrene colorimetric method[J]. Guangzhou Chemical Industry, 2018, 46(14): 77-80.

[28]

姚雪霞, 戴存礼, 李晓林, 等. 邻菲罗啉分光光度法测定微量铁实验条件的探讨[J]. 实验室研究与探索, 2015, 34(3): 16-19.

Yao X X, Dai C L, Li X L, et al. Study on the experimental conditions for the determination of trace iron by o-phenanthroline spectrophotometry[J]. Research and Exploration of Laboratory, 2015, 34(3): 16-19.

[29]

陈爽, 徐接胜. 关于检出限的定义、分类及估算方法的探讨[J]. 广州化工, 2014, 42(18): 137-139.

Chen S, Xu J S. On the definition, classification and estimation of detection limit[J]. Guangzhou Chemical Industry, 2014, 42(18): 137-139.

[30]

伊郎, 宋盼盼, 刘宏, 等. 检出限选择性计算方法研究[J]. 计量与测试技术, 2015, 42(12): 50-51.

Yi L, Song P P, Liu H, et al. Study on the calculation method of detection limit selectivity[J]. Metrology and Measurement Techniques, 2015, 42(12): 50-51.

相似文献(共20条)

[1]

肖晓辉, 黄晓刚, 陈振, 宋波. 中性浸出-硫氰酸汞-硫酸高铁铵分光光度法测定锌精矿中的氯量. 岩矿测试, 2008, 27(3): 227-229.

[2]

张晓鸣, 乐琳. 流动注射合并带停留光度法快速测定环境水样中化学需氧量. 岩矿测试, 2008, 27(2): 87-90.

[3]

杨晓慧, 李海维, 韩权. 4-(5-硝基-2-吡啶偶氮)-1,3-二氨基苯光度法同时测定钴和钯. 岩矿测试, 2008, 27(2): 113-116.

[4]

张建梅, 王洪波, 李风. P256强碱性阴离子树脂分离富集-5-Br-PADAP分光光度法测定铀矿石中微量铀结果不确定度评定. 岩矿测试, 2008, 27(3): 215-218.

[5]

廖海平, 王艳, 应海松. 微波溶样-自动电位滴定法测定铁矿石中全铁量. 岩矿测试, 2007, 26(5): 413-415.

[6]

董学林, 何海洋, 储溱, 宋洲. 封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅. 岩矿测试, 2019, 38(5): 575-582. doi: 10.15898/j.cnki.11-2131/td.201708230132

[7]

马仲武, 胡超涌, 王红梅, 潘涵香. 邻二氮菲分光光度法测定碳酸盐相中微量亚铁. 岩矿测试, 2007, 26(3): 198-200.

[8]

刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896.

[9]

赵怀颖, 温宏利, 夏月莲, 巩爱华, 马生凤. 无汞重铬酸钾-自动电位滴定法准确测定矿石中的全铁含量. 岩矿测试, 2012, 31(3): 473-478.

[10]

薛芳, 刘春华, 夏心泉, 赵书林. 6─溴─苯并噻唑偶氮变色酸双波长标准加入法同时测定铁和铝的研究. 岩矿测试, 1996, (3): 217-221.

[11]

侯明, 单英. 溴邻苯三酚红-丁基罗丹明B高灵敏分光光度法测定微量钛的研究. 岩矿测试, 1999, (1): 53-55.

[12]

张厚廷. 铝片还原—铈量法测定铁矿中的全铁. 岩矿测试, 1989, (1): 68-69.

[13]

吴耀勋, 石乐明. 波长回归法分光光度同时测定铝和铁. 岩矿测试, 1990, (2): 121-124.

[14]

傅翠梨, 陈文瑞, 郭阿明, 李锦堂, 罗学涛. 邻菲啰啉光度法测定高岭土中可溶铁和非可溶铁. 岩矿测试, 2012, 31(4): 621-626.

[15]

秦晓丽, 田贵, 李朝长, 蒋智林. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾. 岩矿测试, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142

[16]

薛光. 黄原酯棉富集分离—全差示光度法测定痕量银. 岩矿测试, 1991, (4): 310-312.

[17]

游健强, 黄典文. 甲基红褪色光度法测定地质样品中痕量锰. 岩矿测试, 1991, (1): 44-46.

[18]

孙嘉彦, 吴嘉钰. 二溴羧基偶氮胂光度法测定钛酸铋烧结物中游离氧化铋. 岩矿测试, 1993, (2): 117-118.

[19]

文加波, 商丹, 宋婉虹, 彭国萍. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较. 岩矿测试, 2011, 30(4): 481-485.

[20]

王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217.

计量
  • PDF下载量(15)
  • 文章访问量(225)
  • HTML全文浏览量(726)
  • 被引次数(0)
目录

Figures And Tables

邻菲啰啉分光光度法测定红层砂岩中Fe(Ⅱ)和全铁的方法探讨

王大娟, 杨根兰, 向喜琼, 蒋文杰, 朱健