【引用本文】 闻静, 张羽旭, 温汉捷, 等. 特殊地质样品中钼同位素分析的化学前处理方法研究[J]. 岩矿测试, 2020, 39(1): 30-40. doi: 10.15898/j.cnki.11-2131/td.201906190087
WEN Jing , ZHANG Yu-xu , WEN Han-jie , et al. Research on the Chemical Pretreatment of Special Geological Samples' Mo Isotopes Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40. doi: 10.15898/j.cnki.11-2131/td.201906190087

特殊地质样品中钼同位素分析的化学前处理方法研究

1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550081;

2. 中国科学院大学, 北京 100049

收稿日期: 2019-06-19  修回日期: 2019-08-01 

基金项目: 国家自然科学基金项目(41573007,41503011)

作者简介: 闻静,硕士研究生,地质工程专业。E-mail:wenjing@mail.gyig.ac.cn。。

Research on the Chemical Pretreatment of Special Geological Samples' Mo Isotopes Analysis

1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China

Received Date: 2019-06-19
Revised Date: 2019-08-01

摘要:Mo同位素的研究在地学领域应用广泛,它可以示踪Mo的全球循环、古海洋氧化还原条件、成矿过程、天体演化过程等。多接收器电感耦合等离子体质谱仪(MC-ICP-MS)分析Mo同位素比值前需对样品进行分离纯化,以富集Mo和去除Zr、Ru、Fe、Mn等干扰元素。处理某些Fe含量特别高且Ca含量也高的特殊地质样品(如含大量黄铁矿的钙质泥岩、钙质页岩等),若根据传统的阴阳离子交换树脂双柱法,需多次使用阳离子交换树脂分离Fe,步骤较繁琐且Mo回收率也会降低,而根据传统的阴离子交换树脂单柱法,使用1mol/L氢氟酸+0.5mol/L盐酸介质会产生较多CaF2沉淀影响分离纯化效果。针对此类特殊地质样品,本实验使用同一阴离子树脂柱(AG1-X8 resin,100~200目)对样品进行两次淋洗,第一次使用6mol/L盐酸,第二次使用1mol/L氢氟酸+0.1mol/L盐酸和6mol/L盐酸。结果表明Mo的回收率>96%,干扰元素的去除效果好,尤其是Ru的去除率接近100%,比原方法提高了约12%。对实际样品进行实验的结果也显示,Mo的回收率和干扰元素的去除都符合要求,δ98/95Mo测定值与文献报道值一致。改进后的阴离子交换树脂单柱-二次淋洗法适用于Fe、Ca含量较高的特殊样品,降低了分析成本,也适用于绝大多数地质样品。

关键词: Mo同位素, 离子交换树脂法, 化学前处理, 高铁高钙地质样品, MC-ICP-MS

Research on the Chemical Pretreatment of Special Geological Samples' Mo Isotopes Analysis

KEY WORDS: Mo isotopes, ion exchange resin, chemical pretreatment, geological sample with high Ca and Fe, MC-ICP-MS

本文参考文献

[1]

朱祥坤,王跃,闫斌,等.非传统稳定同位素地球化学的创建与发展[J].矿物岩石地球化学通报,2013,32(6):651-688.

Zhu X K,Wang Y,Yan B,et al.Developments of non-traditional stable isotope geochemistry[J].Bulletin of Mineralogy,Petrology and Geochemistry,2013,32(6):651-688.

[2]

Malinovsky D,Hammarlund D,Ilyashuk B,et al.Variations in the isotopic composition of molybdenum in freshwater lake systems[J].Chemical Geology,2007,236(3-4):181-198.

[3]

Archer C,Vance D.The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans[J].Nature Geoscience,2008,1(9):597-600.

[4]

Nägler T F,Neubert N,Böttcher M E,et al.Molybdenum isotope fractionation in pelagic euxinia:Evidence from the modern Black and Baltic Seas[J].Chemical Geology,2011,289(1-2):1-11.

[5]

Noordmann J,Weyer S,Montoya-Pino C,et al.Uranium and molybdenum isotope systematics in modern euxinic basins:Case studies from the central Baltic Sea and the KyllarenFjord (Norway)[J].Chemical Geology,2015,396(9):182-195.

[6]

Dahl T W,Wirth S B.Molybdenum isotope fractionation and speciation in a euxinic lake-Testing ways to discern isotope fractionation processes in a sulfidic setting[J].Chemical Geology,2017,460(5):84-92.

[7]

Neely R A,Gislason S R,Ólafsson M,et al.Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems,Iceland[J].Earth and Planetary Science Letters,2018,486(15):108-118.

[8]

Siebert C,Nägler T F,Blanckenburg F V,et al.Molybdenum isotope record as a potential new proxy for paleoeanography[J].Earth and Planetary Science Letters,2003,211(1-2):159-171.

[9]

Arnold G L,Anbar A D,Barling J,et al.Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans[J].Science,2004,304(5667):87-90.

[10]

Lehmann B,Nägler T F,Holland H D,et al.Highly metalliferous carbonaceous shale and Early Cambrian seawater[J].Geology,2007,35(5):403-406.

[11]

蒋少涌,凌洪飞,赵葵东,等.华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物层的钼同位素组成讨论[J].岩石矿物学杂志,2008,27(4):341-345.

Jiang S Y,Ling H F,Zhao K D,et al.Discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation inSouth China[J].Acta Petrologica et Mineralogica,2008,27(4):341-345.

[12]

Kendall B,Komiya T,Lyons T W,et al.Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the Late Ediacaran Period[J].Geochimica et Cosmochimica Acta,2015,156(1):173-193.

[13]

Kurzweil F,Drost K,Pašava J,et al.Coupled sulfur,iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran[J].Geochimica et Cosmochimica Acta,2015,171(15):121-142.

[14]

Wen H J,Fan H F,Zhang Y X,et al.Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J].Geochimica et Cosmochimica Acta,2015,164(1):1-16.

[15]

Ruebsam W,Dickson A J,Hoyer E M,et al.Multiproxy reconstruction of oceanographic conditions in the southern epeiric Kupferschiefer Sea (Late Permian) based on redox-sensitive trace elements,molybdenum isotopes and biomarkers[J].Gondwana Research,2017,44:205-218.

[16]

Yin L,Li J,Tian H,et al.Rhenium-osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation,SW China:Evidence of a well oxygenated ocean at ca.520Ma[J].Chemical Geology,2018,499(5):26-42.

[17]

Chen J B,Zhao L S,Algeo T J,et al.Evaluation of paleomarine redox conditions using Mo-isotope data in low-[Mo] sediments:A case study from the Lower Triassic of South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,519(1):178-193.

[18]

Duan Y,Anbar A D,Arnold G L,et al.Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J].Geochimica et Cosmochimica Acta,2010,74(23):6655-6668.

[19]

Wen H J,Carigan J,Zhang Y X,et al.Molybdenum isotopic records across the Precambrian-Cambrian Boundary[J].Geology,2011,39(8):775-778.

[20]

Eroglu S,Schoenberg R,Wille M,et al.Geochemical stratigraphy,sedimentology,and Mo isotope systematics of the ca.2.58-2.50 Ga-old Transvaal Supergroup carbonate platform,South Africa[J].Precambrian Research,2015,266:27-46.

[21]

Kurzweil F,Wille M,Schoenberg R,et al.Continuously increasing δ98Mo values in Neoarchean blackshales and iron formations from the Hamersley Basin[J].Geochimica et Cosmochimica Acta,2015,164(1):523-542.

[22]

Li G S,Wang Y B,Shi G R,et al.Fluctuations of redox conditions across the Permian-Triassic Boundary-New evidence from the GSSP section in Meishan of South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2015,448(15):48-58.

[23]

Dickson A J,Jenkyns H C,Porcelli D,et al.Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2(Late Cretaceous)[J].Geochimica et Cosmochimica Acta,2016,178(1):291-306.

[24]

Kurzweil F,Wille M,Gantert N,et al.Manganese oxide shuttling in pre-GOE oceans-Evidence from molybdenum and iron isotopes[J].Earth and Planetary Science Letters,2016,452(15):69-78.

[25]

Matthews A,Azrieli-Tal I,Benkovitz A,et al.Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies,Fe speciation,Fe and Mo isotopes[J].Chemical Geology,2017,475(25):24-39.

[26]

Dong B H,Long X P,Li J,et al.Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area,South China:Evidence for redox environment corresponding to the Cambrian Explosion[J].Gondwana Research,2019,69:45-55.

[27]

Murthy V R.Elemental and isotopic abundances of molybdenum in some meteorites[J].Geochimica et Cosmochimica Acta,1963,27:1171-1178.

[28]

Nicolussi G K,Pellin M J,Lewis R S,et al.Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite[J].Geochimica et Cosmochimica Acta,1998,62(6):1093-1104.

[29]

Burkhardt C,Hin R C,Kleine T,et al.Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation[J].Earth and Planetary Science Letters,2014,391(1):201-211.

[30]

Worsham E A,Burkhardt C,Budde G,et al.Distinct evolution of the carbonaceous and non-carbonaceous reservoirs:Insights from Ru,Mo,and W isotopes[J].Earth and Planetary Science Letters,2019,521(1):103-112.

[31]

Mathur R,Brantley S,Anbar A,et al.Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits[J].Miner Deposita,2010,45(1):43-50.

[32]

Shafiei B,Shamanian G,Mathur R,et al.Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems[J].Miner Deposita,2015,50(3):281-291.

[33]

Lehmann B,Frei R,Xu L G,et al.Early Cambrian black shale-hosted Mo-Ni and Vmineralization on the rifted margin of the Yangtze Platform,China:Reconnaissance chromium isotope data and a refined metallogenic model[J].Economic Geology,2015,111(1):89-103.

[34]

Wang Y,Zhou L,Gao S,et al.Variation of molybdenum isotopes in molybdenite from porphyryand vein Mo deposits in the Gangdese metallogenic belt,Tibetan Plateau and its implications[J].Miner Deposita,2015,51(2):201-210.

[35]

Yao J M,Mathur R,Sun W D,et al.Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning,evidence from the Dahutang W-Cu-Mo ore field[J].Geochemistry,Geophysics,Geosystems,2016,17(5):1725-1739.

[36]

Migeon V,Bourdon B,Pili E,et al.Molybdenum isotope fractionation during acid leaching of a granitic uranium ore[J].Geochimica et Cosmochimica Acta,2018,231(15):30-49.

[37]

胡文峰,张烨恺,刘金华,等.西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义[J].地球科学,2019,44(6):1923-1934.

Hu W F,Zhang Y K,Liu J H,et al.The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese,Tibet,and their significance[J].Earth Science,2019,44(6):1923-1934.

[38]

孟郁苗,胡瑞忠,高剑峰,等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试,2016,35(4):339-348.

Meng Y M,Hu R Z,Gao J F,et al.Research progress on Sb geochemistry and Sb isotopes[J].Rock and Mineral Analysis,2016,35(4):339-348.

[39]

尹鹏,何倩,何会军,等.离子交换树脂法分离沉积物中锶和钕的影响因素研究[J].岩矿测试,2018,37(4):379-387.

Yin P,He Q,He H J,et al.Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J].Rock and Mineral Analysis,2018,37(4):379-387.

[40]

袁永海,杨锋,余红霞,等.微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J].岩矿测试,2018,37(4):356-363.

Yuan Y H, Yang F, Yu H X, et al.High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry withmicrowave digestion[J].Rock and Mineral Analysis, 2018, 37(4), 356-363.

[41]

Barling J,Arnold G L,Anbar A D.Natural mass-dependent variations in the isotopic composition of molybdenum[J].Earth and Planetary Science Letters,2001,193(3-4):447-457.

[42]

Pietruszka A J,Walker R J,Candela P A.Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS:An evaluation of matrix effects[J].Chemical Geology,2006,225(1-2):121-136.

[43]

张羽旭,温汉捷,樊海峰.地质样品中Mo同位素测定的前处理方法研究[J].分析化学,2009,37(2):216-220.

Zhang Y X,Wen H J,Fan H F.Chemical pretreatment methods for measurement of Mo isotope ratio on geological samples[J].Chinese Journal of Analytical Chemistry,2009,37(2):216-220.

[44]

张羽旭.非传统稳定同位素Mo、Cd的分析测试方法及其地质应用[D].北京:中国科学院大学,2010. Zhang Y X.The researches on analytical methods of the isotope fractionation of non-traditional stable isotopes (Mo,Cd) and its application in earth sciences[D].Beijing:University of Chinese Academy of Sciences,2010.

[45]

Liu J,Wen H J,Zhang Y X,et al.Precise Mo isotope ratio measurements of low-Mo(ng·g-1) geological samples using MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2016,31(6):1287-1297.

[46]

Magnall J M,Gleeson S A,Poulton S W,et al.Links between seawater paleoredox and the formation of sediment-hosted massive sulphide(SHMS) deposits -Fe speciation and Mo isotope constraints from Late Devonian mudstones[J].Chemical Geology,2018,490(25):45-60.

[47]

Pearce C R,Cohen A S,Parkinson I J.Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS[J].Geostandards and Geoanalytical Research,2009,33(2):219-229.

[48]

李津,朱祥坤,唐索寒.钼化学纯化法及其适用的MC-ICP-MS仪器质量分馏校正方法对比[J].岩石矿物学杂志,2011,30(4):748-754.

Li J,Zhu X K,Tang S H.Ion-exchange separation of Mo and its suitability for sample-standard bracketing and double spiking techniques of mass bias correction[J].Acta Petrologica et Mineralogica,2011,30(4):748-754.

[49]

Li J,Zhu X K,Tang S H,et al.High-precision measurement of molybdenum isotopic compositions of selected geochemical reference materials[J].Geostandards and Geoanalytical Research,2016,40(3):405-415.

[50]

King E K,Thompson A,Chadwick O A,et al.Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect[J].Chemical Geology,2016,445(16):54-67.

[51]

Kraus K A,Nelson F,Moore G E.Molybdenum(Ⅵ),tungsten(Ⅵ) and uranium(Ⅵ) in HCl and HCl-HF solutions[J].Journal of the American Chemical Society,1955,77(5):3972-3977.

[52]

Wen H J,Carigan J,Cloquet C,et al.Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS:Proposition for delta zero and secondary references[J].Journal of Analytical Atomic Spectrometry,2010,25(5):716-721.

相似文献(共20条)

[1]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[2]

严爽, 黄康俊, 付勇, 包志安, 马龙, 龙克树, 叶远谋, 陈蕤, 陈满志. 铝土矿中锂同位素分离提纯方法的建立. 岩矿测试, 2020, 39(1): 41-52. doi: 10.15898/j.cnki.11-2131/td.2019081201275

[3]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[4]

朱传威, 温汉捷, 樊海峰, 张羽旭, 刘洁, 杨涛, 王光辉. 铅锌矿床地质样品的Ge同位素预处理方法研究. 岩矿测试, 2014, 33(3): 305-311.

[5]

戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究. 岩矿测试, 2012, 31(1): 95-102.

[6]

胡婧, 刘卫国. 离子交换色层法测定低浓度铵态氮水样的氮同位素研究. 岩矿测试, 2013, 32(3): 495-501.

[7]

刘战庆, 刘善宝, 陈毓川, 王成辉, 万浩章, 陈国华, 李赛赛, 梁力杰. 江西朱溪铜钨矿区煌斑岩LA-ICP-MS锆石U-Pb同位素定年及地质意义. 岩矿测试, 2014, 33(5): 758-766.

[8]

丁悌平, 张自超. 关于同位素地质测试数据的数据处理及结果表示. 岩矿测试, 2000, (1): 77-79.

[9]

张巽, 谢智. 铼—锇同位素分析中样品的预处理. 岩矿测试, 1997, (4): 284-288.

[10]

黄小文, 漆亮, 高剑峰. 铼-锇同位素分析样品预处理研究进展. 岩矿测试, 2011, 30(1): 90-103.

[11]

杨刚, 陈江峰, 杨胜洪, 屈文俊, 杜安道. 同位素稀释等离子体质谱法准确测定地质样品中痕量铼. 岩矿测试, 2006, 25(2): 125-128.

[12]

罗津新. 阳离子交换树脂填充纸吸附、X—射线荧光光谱法测定矿石及选冶样品中的钍. 岩矿测试, 1984, (3): 270-272.

[13]

石俊仙, 姚建贞, 张勤, 何江. 阳离子交换树脂静态分离-催化分光光度法测定生物样品中痕量碘. 岩矿测试, 2006, 25(4): 327-330.

[14]

吴福元, 张宏福, 杨岳衡, 谢烈文. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展. 岩矿测试, 2006, 25(2): 151-158.

[15]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[16]

张巽, , 金立新. 铼—锇同位素分析中试样化学预处理方法进展. 岩矿测试, 2002, (1): 49-54.

[17]

杨华蕊. 天然沸石岩对铁的离子交换性能. 岩矿测试, 1983, (3): 228-230.

[18]

焦杏春, 王 广, 叶传永, 刘晓端, 杨永亮, 王晓春. 样品前处理过程中多环芳烃的稳定碳同位素分馏. 岩矿测试, 2010, 29(3): 207-211.

[19]

张兴超, 刘超, 黄艺, 黄方, 于慧敏. 干法灰化处理对含有机质土壤样品铜同位素测量的影响. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201803290033

[20]

吴静淑, 罗续荣. 制备碳、氧同位素样品的磷酸——加热300℃脱水法. 岩矿测试, 1987, (1): 73-74.

计量
  • PDF下载量(8)
  • 文章访问量(60)
  • 被引次数(0)
目录

Figures And Tables

特殊地质样品中钼同位素分析的化学前处理方法研究

闻静, 张羽旭, 温汉捷, 朱传威, 樊海峰