【引用本文】 郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. doi: 10.15898/j.cnki.11-2131/td.201906110084
ZHENG Zhi-kang, ZENG Jiang-ping, WANG Jia-song, et al. Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. doi: 10.15898/j.cnki.11-2131/td.201906110084

常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑

1. 

中国地质调查局天津地质调查中心, 天津 300170

2. 

华北地质科技创新中心, 天津 300170

3. 

中国地质调查局泥质海岸带地质环境重点实验室, 天津 300170

4. 

中检(天津)检测有限公司, 天津 300300

收稿日期: 2019-06-11  修回日期: 2019-08-25  接受日期: 2019-10-21

基金项目: 中国地质调查局地质调查项目“地质调查标准化与标准制修订(2019—2021)(中国地质调查局天津地质调查中心)”(DD20190472)

作者简介: 郑智慷, 工程师, 主要从事岩矿分析测试工作。E-mail:1016271514@qq.com

通信作者: 王家松, 高级工程师, 主要从事化学分析和标准化工作。E-mail:372516720@qq.com

Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

1. 

Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China

2. 

North China Center for Geoscience Innovation, Tianjin 300170, China

3. 

Key Laboratory of Geological Environment of Muddy Coastal Zone, China Geological Survey, Tianjin 300170, China

4. 

China Inspection(Tianjin) Testing Co., LTD, Tianjin 300300, China

Corresponding author: WANG Jia-song, 372516720@qq.com

Received Date: 2019-06-11
Revised Date: 2019-08-25
Accepted Date: 2019-10-21

摘要:采用王水溶解锑矿石常出现溶矿不彻底、提取过程中锑水解的问题,导致测定结果偏低;虽然原子荧光光谱法广泛应用于锑的测定,但是该方法由于仪器线性范围窄,对于高含量锑(>5%)的测定容易引入较大稀释误差。本文对样品采用氢氟酸-硝酸-盐酸混合酸溶后,在提取过程中加入酒石酸与锑络合,充分抑制了锑的水解。实验结果表明:采用氢氟酸、硝酸、盐酸混合酸体系的溶矿方式,能够有效分解矿石中的硅酸盐组分,使溶解更加彻底,锑的测定结果优于王水溶矿,且检出限更低(1.10μg/g);通过酒石酸与锑的络合及盐酸对锑水解的抑制,锑的测定结果优于王水介质及盐酸介质的结果,且方法精密度(RSD,n=6)为0.11%~1.11%,较其他介质更稳定。在ICP-OES分析中通过对锑元素分析谱线的优选,可以获得更宽的线性范围,从而实现了对较高含量锑的准确测定。本方法能快速、有效溶解锑矿石并避免锑元素水解,经国家一级标物验证,所得结果与认定值相符,适用于分析锑矿石中含量范围在0.7%~40%的锑。

关键词: 锑矿石, , 氢氟酸-硝酸-盐酸酸溶, 常压密闭微波消解, 酒石酸-盐酸提取, 电感耦合等离子体发射光谱法

要点

(1) 选取了氢氟酸-硝酸-盐酸混合酸溶矿体系。

(2) 优选了酒石酸-盐酸混合提取液。

(3) 本方法溶矿彻底、提取完全,ICP-OES线性范围宽。

Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

ABSTRACT

BACKGROUND:

The dissolution of antimony ore by aqua regia is often incomplete and antimony is easy to hydrolyze in the process of extraction, which leads to inaccurate results. Although atomic fluorescence spectrometry has been widely used in the determination of antimony, it is easy to introduce large dilution error for the determination of high-content antimony (>5%) due to the narrow linear range of the instrument.

OBJECTIVES:

To solve the problem of incomplete dissolution of antimony ores and hydrolysis of antimony in the extraction process, and establish a new method with wider linear range for determination of antimony in antimony ores.

METHODS:

Based on inductively coupled plasma-optical emission spectrometry (ICP-OES), the antimony ore was fully dissolved by hydrofluoric acid, nitric acid and hydrochloric acid, and the hydrolysis of antimony was fully inhibited by the complexation of tartaric acid and antimony.

RESULTS:

The results showed that the solution of the mixed hydrofluoric acid, nitric acid and hydrochloric acid can effectively decompose the silicate components in antimony ores, which can make antimony ores dissolve more completely. The determination

result:

of antimony was better than that of aqua regia, and the detection limit was lower (1.10μg/g). The determination result of antimony obtained by the mixed extraction method of tartaric acid and hydrochloric acid was better than that of aqua regia. The precision of the method was 0.11%-1.11%, which was more stable than that of hydrochloric acid or aqua regia. By using an inductively coupled plasma emission spectrometer, a wider linear range can be obtained by optimizing the spectrum of antimony element analysis, therefore realizing the accurate determination of high-content antimony.

CONCLUSIONS:

This method can dissolve antimony ore quickly and effectively, and avoid the hydrolysis of antimony. The method is confirmed by national first grade standard materials, and the result is in agreement with the certified values. This method is suitable for the analysis of 0.7%-40% antimony in antimony ores.

KEY WORDS: antimony ore, antimony, hydrofluoric acid-nitric acid-hydrochloric acid dissolution, atmospheric pressure closed microwave digestion, tartaric acid-hydrochloric acid extraction, inductively coupled plasma-optical emission spectrometry

HIGHLIGHTS

(1) The mixed acid solution system of hydrofluoric acid, nitric acid, and hydrochloric acid was selected.

(2) The mixed extraction solution of tartaric acid and hydrochloric acid was chosen.

(3) Advantages of using the method were complete dissolution, complete extraction and wide linear range.

本文参考文献

[1]

罗英杰, 王小烈, 柳群义, 等. 中国未来锑资源需求预测[J]. 中国矿业, 2017, 26(3): 1-5.

Luo Y J, Wang X L, Liu Q Y, et al. The future demand of antimony in China[J]. China Mining Magazine, 2017, 26(3): 1-5.

[2]

李皓, 张尼, 马熠罡, 等. 碱熔样电感耦合等离子体发射光谱法测定锑矿石中锑[J]. 化学分析计量, 2016, 25(2): 69-71.

Li H, Zhang N, Ma Y G, et al. Determination of antimony in antimony ore by inductively coupled plasma emission spectrometry combined with alkali fusion pretreatment[J]. Chemical Analysis and Meterage, 2016, 25(2): 69-71.

[3]

孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339-348.

Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339-348.

[4]

何贵, 韦平, 王禄军, 等. 溶样方法对化探样品中砷锑测定的影响[J]. 黄金, 2013, 34(2): 77-79.

He G, Wei P, Wang L J, et al. Impact of dissolving reagent on determination of arsenic and stibium of geochemical samples[J]. Gold, 2013, 34(2): 77-79.

[5]

魏轶, 窦向丽, 巨力佩, 等. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J]. 岩矿测试, 2013, 32(5): 715-718.

Wei Y, Dou X L, Ju L P, et al. Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J]. Rock and Mineral Analysis, 2013, 32(5): 715-718.

[6]

高春英, 王琳, 范世华, 等. 自动点位滴定法测定锑矿石中锑[J]. 分析试验室, 2016, 35(12): 1441-1444.

Gao C Y, Wang L, Fan S H, et al. Determination of total antimony in antimony ores with an automatic potentiometric titration method[J].Chinese Journal of Analysis Laboratory, 2016, 35(12): 1441-1444.

[7]

高云, 宋召霞. 硫化钠还原-硫酸铈滴定法测定含锑金精矿中锑[J]. 冶金分析, 2017, 37(3): 39-43.

Gao Y, Song Z X. Determination of antimony in gold concentrate containing antimony by cerium sulfate titrimetry with sodium sulfide reduction[J]. Metallurgical Analysis, 2017, 37(3): 39-43.

[8]

陈珍娥, 马超, 张海, 等. 分光光度计的改装及在锑测定中的应用[J]. 冶金分析, 2017, 37(5): 77-81.

Chen Z E, Ma C, Zhang H, et al. Modification of spectrophotometer and its application in determination of antimony[J]. Metallurgical Analysis, 2017, 37(5): 77-81.

[9]

Unutkan T, Koyuncu I, Diker C, et al. Accurate and sensitive analytical strategy for the determination of antimony:Hydrogen assisted t-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry[J].Bulletin of Environmental Contamination and Toxicology, 2019, 102(1): 122-127.

[10]

刘志仓, 郭国涛, 王宏强, 等. 火焰原子吸收法测定矿石中锑元素的方法试验[J]. 中国金属通报, 2018, (4): 198.

Liu Z C, Guo G T, Wang H Q, et al. Determination of antimony in ores by flame atomic absorption spectrometry[J]. China Metal Bulletin, 2018, (4): 198.

[11]

Zurynková P, Dědina J, Kratzer J, et al. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer[J]. Analytica Chimica Acta, 2018, (1010): 11-19.

[12]

Mattiazzi P, Bohrer D, Viana C, et al. Determination of antimony in pharmaceutical formulations and beverages using high-resolution continuum-source graphite furnace atomic absorption spectrometry[J]. Journal of AOAC International, 2017, 100(3): 737-742.

[13]

袁永海, 尹昌慧, 元志红, 等. 氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J]. 冶金分析, 2016, 36(3): 39-43.

Yuan Y H, Yin C H, Yuan Z H, et al. Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 39-43.

[14]

李颜君, 杨占菊, 董更福, 等. 氢化物发生-原子荧光光谱法同时测定铅锭中砷锑[J]. 冶金分析, 2017, 37(11): 75-79.

Li Y J, Yang Z J, Dong G F, et al. Simultaneous determination of arsenic and antimony in lead ingot by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2017, 37(11): 75-79.

[15]

李美秀, 齐少华. 微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J]. 化学分析计量, 2018, 27(6): 81-86.

Li M X, Qi S H. Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(6): 81-86.

[16]

Dos S, Gerffeson S, Silva L, et al. Analytical strategies for determination and environmental impact assessment of inorganic antimony species in natural waters using hydride generation atomic fluorescence spectrometry (HG-AFS)[J].Journal of the Brazilian Chemical Society, 2018, 29(1): 185-190.

[17]

刘江斌, 余宇, 段九存, 等. 熔融制样X射线荧光光谱法测定锑矿石中的锑和14种微量元素[J]. 岩矿测试, 2014, 33(6): 828-833.

Liu J B, Yu Y, Duan J C, et al. Determination of antimony and 14 trace elements in antimony ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 828-833.

[18]

修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526-532.

Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526-532.

[19]

王干珍, 王子杰, 郭腊梅, 等. 稀释剂粉末压片-X射线荧光光谱法测定锑矿石中锑及主量组分[J]. 中国无机分析化学, 2016, 6(1): 22-25.

Wang G Z, Wang Z J, Guo L M, et al. Determination of antimony and main components in antimony ores by X-ray fluorescence spectrometer with diluent-pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 22-25.

[20]

黎香荣, 唐梦奇, 袁焕明, 等. 熔融制样-X射线荧光光谱法测定锑矿石中主次成分[J]. 冶金分析, 2014, 34(7): 38-42.

Li X R, Tang M Q, Yuan H M, et al. Determination of major and minor components in antimony ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2014, 34(7): 38-42.

[21]

高永宏, 刘江斌, 祝建国, 等. X射线荧光光谱法同时快速测定锑矿石中伴生及有害元素[J]. 分析测试技术与仪器, 2014, 20(2): 98-102.

Gao Y H, Liu J B, Zhu J G, et al. Simultaneous rapid determination of associated and harmful elements in antimony ores by X-ray fluorescence spectrometry[J]. Analysis and Testing Technology and Instruments, 2014, 20(2): 98-102.

[22]

严慧, 王干珍, 汤行, 等. 电感耦合等离子体发射光谱法同时测定锑矿石中14种元素的含量[J]. 理化检验(化学分册), 2017, 53(1): 34-38.

Yan H, Wang G Z, Tang X, et al. Simultaneous determination of 14 elements in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1): 34-38.

[23]

魏灵巧, 付胜波, 罗磊, 等. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌[J]. 岩矿测试, 2012, 31(6): 967-970.

Wei L Q, Fu S B, Luo L, et al. Simultaneous determination of Sb, As, Cu, Pb and Zn in antimony ores by inductively coupled plasma-atomic emission spectrometry with a multi-directional observation mode[J]. Rock and Mineral Analysis, 2012, 31(6): 967-970.

[24]

任志海, 牟思名, 程功, 等. 王水密闭溶矿-电感耦合等离子体原子发射光谱法测定锑矿石中的锑[J]. 中国无机分析化学, 2014, 4(1): 53-55.

Ren Z H, Mu S M, Cheng G, et al. Determination of Sb in stibium ore by inductively coupled plasma-atomic emission spectrometry with closed digestion using aqua regia[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 53-55.

[25]

张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930-933.

Zhang S L, Wu Z D, Liu X L, et al. ICP-AES Determination of Fe, Cu, Pb, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7): 930-933.

[26]

陈丽珠, 曹胜. 电感耦合等离子体发射光谱(ICP-OES)法测定矿石中锑[J]. 中国无机分析化学, 2017, 7(4): 60-63.

Chen L Z, Cao S. Determination of antimony in ores by inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4): 60-63.

[27]

冯源强, 王烨彬, 苏思强, 等. 电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 广州化工, 2017, 45(18): 98-100.

Feng Y Q, Wang Y B, Su S Q, et al. Determination of Sb in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Guangzhou Chemical Industry, 2017, 45(18): 98-100.

[28]

Chen S, Zhu S, Lu D, et al. Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J]. Atomic Spectroscopy, 2018, 39(2): 55-61.

[29]

Dundar M S, Kaptan F, Caner C, et al. Speciation of antimony using dithizone ligand via cloud point extraction and determination by USN-ICP-OES[J]. Atomic Spectroscopy, 2018, 39(3): 100-105.

[30]

张志刚, 刘凯, 陈泓, 等. 酒石酸络合掩蔽锑-氢醌容量法测定锑矿石样品中的常量金[J]. 岩矿测试, 2015, 34(4): 454-458.

Zhang Z G, Liu K, Chen H, et al. Determination of gold in antimony ores by hydroquinone volumetric method with antimony tartrate as complexing and masking agent[J]. Rock and Mineral Analysis, 2015, 34(4): 454-458.

[31]

曾昭文, 郑成, 毛桃嫣, 等. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(Supplement): 1-14.

Zeng Z W, Zheng C, Mao T Y, et al. Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(Supplement): 1-14.

[32]

童兵, 许虹, 刘陟娜, 等. 全球锑矿资源分布现状及对中国勘察投资建议[J]. 中国矿业, 2017, 26(A1): 5-10.

Tong B, Xu H, Liu Z N, et al. Distribution of global antimony resources and proposals of exploration investment for China[J].China Mining Magazine, 2017, 26(A1): 5-10.

相似文献(共20条)

[1]

魏灵巧, 付胜波, 罗磊, 黄小华, 龙安应, 帅琴. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌. 岩矿测试, 2012, 31(6): 967-970.

[2]

魏轶, 窦向丽, 巨力佩, 张旺强, 赵伟华, 余志峰, 毛振才. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑. 岩矿测试, 2013, 32(5): 715-718.

[3]

马新荣, 马生凤, 王蕾, 温宏利, 巩爱华, 许俊玉. 王水溶矿-等离子体光谱法测定砷矿石和锑矿石中砷锑硫铜铅锌. 岩矿测试, 2011, 30(2): 190-194.

[4]

张志刚, 刘凯, 陈泓, 冯瑞, 黄劲, 魏晶晶, 詹宝. 酒石酸络合掩蔽锑-氢醌容量法测定锑矿石样品中的常量金. 岩矿测试, 2015, 34(4): 454-458. doi: 10.15898/j.cnki.11-2131/td.2015.04.013

[5]

刘江斌, 余宇, 段九存, 赵伟华, 李瑞仙, 黄兴华, 和振云, 党亮. 熔融制样X射线荧光光谱法测定锑矿石中的锑和14种微量元素. 岩矿测试, 2014, 33(6): 828-833.

[6]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[7]

徐洛 章勇 马玲 胡浩. 盐酸除锑—原子吸收测定锑矿中的金. 岩矿测试, 2001, (2): 142-144.

[8]

熊英, 董亚妮, 裴若会, 崔长征. 电感耦合等离子体发射光谱法应用于锑矿石化学物相分析. 岩矿测试, 2019, 38(5): 497-502. doi: 10.15898/j.cnki.11-2131/td.201809010131

[9]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[10]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[11]

王蕾, 张保科, 马生凤, 赵怀颖, 郭琳. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨. 岩矿测试, 2014, 33(5): 661-664.

[12]

卢彦, 冯勇, 李刚, 刘卫. 酸溶-电感耦合等离子发射光谱法测定密西西比型铅锌矿床矿石中的铅. 岩矿测试, 2015, 34(4): 442-447. doi: 10.15898/j.cnki.11-2131/td.2015.04.011

[13]

黄光明, 蔡玉曼, 王冰, 乔爱香, 高孝礼, 江冶. 敞开酸溶-电感耦合等离子体光谱法测定钨矿石和钼矿石中微量元素. 岩矿测试, 2013, 32(3): 431-435.

[14]

汤志勇, 敖愫. 碱性体系在线氢化物发生原子荧光光谱法测定铜矿石中痕量砷锑铋. 岩矿测试, 1998, (4): 285-289.

[15]

温宏利, 马生凤, 马新荣, 王蕾, 范凡, 巩爱华. 王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素. 岩矿测试, 2011, 30(5): 566-571.

[16]

徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80.

[17]

文加波, 商丹, 宋婉虹, 彭国萍. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较. 岩矿测试, 2011, 30(4): 481-485.

[18]

王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217.

[19]

包生样. 锑矿石中14种主量和痕量元素的XRF法分析. 岩矿测试, 1989, (3): 199-201.

[20]

陈永欣, 刘国文, 刘顺琼, 马丽方, 吕泽娥, 蔡维专. 微波消解-等离子体发射光谱法测定锰矿石中硅铝铁磷. 岩矿测试, 2007, 26(3): 241-242.

计量
  • PDF下载量(17)
  • 文章访问量(96)
  • HTML全文浏览量(7)
  • 被引次数(0)
目录

Figures And Tables

常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑

郑智慷, 曾江萍, 王家松, 乔赵育, 刘义博, 吴良英, 王力强