【引用本文】 王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397. doi: 10.15898/j.cnki.11-2131/td.201906030079
WANG Li-qiang, WANG Jia-song, XU Tie-min, et al. Determination of Major Elements in Sepoilite by Inductively Coupled Plasma-Optical Emission Spectrometry with Opening Acid Dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397. doi: 10.15898/j.cnki.11-2131/td.201906030079

敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分

1. 

中国地质调查局天津地质调查中心, 天津 300170

2. 

华北地质科技创新中心, 天津 300170

3. 

中国地质调查局泥质海岸带地质环境重点实验室, 天津 300170

收稿日期: 2019-06-03  修回日期: 2019-08-20  接受日期: 2019-10-21

基金项目: 中国地质调查局地质调查项目“标准化与标准制修订(2019—2021)”(DD20190472)

作者简介: 王力强, 工程师, 主要从事地质样品分析。E-mail:1046360046@qq.com

通信作者: 王家松, 硕士, 高级工程师, 主要从事地质样品分析。E-mail:372516720@qq.com

Determination of Major Elements in Sepoilite by Inductively Coupled Plasma-Optical Emission Spectrometry with Opening Acid Dissolution

1. 

Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China

2. 

North China Center for Geoscience Innovation, Tianjin 300170, China

3. 

Key Laboratory of Geological Environment of Muddy Coastal Zone, China Geological Survey, Tianjin 300170, China

Corresponding author: WANG Jia-song, 372516720@qq.com

Received Date: 2019-06-03
Revised Date: 2019-08-20
Accepted Date: 2019-10-21

摘要:海泡石是一种应用广泛的纤维状富镁硅酸盐黏土矿物,主要成分为硅和镁,伴有铝钾钠等杂质,测定海泡石主量成分含量对于矿物性能的综合评价具有重要意义。海泡石主量元素分析通常采用经典化学法,样品碱熔处理后使用容量法、光度法、原子吸收光谱法测定,操作繁琐,耗时长,且无法同时测定钾钠。本文建立了一种氢氟酸-硝酸-高氯酸敞口酸溶样品,ICP-OES测定海泡石中氧化铝等主量成分的方法。对氢氟酸的用量进行了优化,选择Al 396.153nm、Ti 334.940nm、K 766.490nm、Na 589.592nm、Ca 422.673nm、Mg 285.213nm、Fe 238.204nm作为分析谱线,采用轴向观测方式进行测量。由于海泡石中的镁含量较高,用ICP-OES测定时存在基体效应,通过配制系列高镁混合标准溶液以匹配基体。ICP-OES法同时测定铝钛钾钠钙镁铁各元素标准曲线线性相关系数均大于0.9990,方法检出限为0.53~3.25μg/g,测定结果的相对标准偏差(RSD,n=10)为0.66%~5.65%,各元素回收率为95.3%~108.5%。本方法采用的酸溶前处理方式较碱熔操作更加简单,测定结果与经典化学方法所得结果吻合较好,能够满足海泡石样品的分析需求。

关键词: 海泡石, 氢氟酸-硝酸-高氯酸敞口酸溶, , 主量元素, 电感耦合等离子体发射光谱法

要点

(1) 采用敞口酸溶方式,ICP-OES法测定海泡石中的7种主量成分。

(2) 优化了氢氟酸用量。

(3) 配制系列高镁混合标准溶液以匹配基体,降低干扰。

Determination of Major Elements in Sepoilite by Inductively Coupled Plasma-Optical Emission Spectrometry with Opening Acid Dissolution

ABSTRACT

BACKGROUND:

Sepiolite is a widely used fibrous magnesium-rich silicate clay mineral. Sepiolite is mainly composed of silicon and magnesium, with minor aluminum, potassium, sodium and other impurities. Determination of the major element of sepiolite usually adopts the classical chemical analytical method. After the alkali melting treatment, the sample is determined by volumetric method, photometry and atomic absorption spectrometry, which is inefficient and time-consuming. Moreover, potassium and sodium cannot be simultaneously determined.

OBJECTIVES:

To find an efficient method for the determination of seven major elements in sepiolite.

METHODS:

The samples were digested by hydrofluoric acid, nitric acid, and perchloric acid. Contents of major elements such as Al2O3 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The dosage of hydrofluoric acid was optimized. The analytical spectral lines were Al 396.153nm, Ti 334.940nm, K 766.490nm, Na 589.592nm, Ca 422.673nm, Mg 285.213nm and Fe 238.204nm, and elements were determined by axial observation. The content of magnesium in sepiolite was high, and there was a certain matrix effect during ICP-OES analysis. A series of high magnesium mixed standard solutions were prepared to match the matrix.

RESULTS:

The linear correlation coefficient of the standard curve of each element was greater than 0.9990, the detection limits of the method were 0.53-3.25μg/g, the relative standard deviations (RSD, n=10) of the measured results were 0.66%-5.65%, and the recoveries of each element were 95.3%-108.5%.

CONCLUSIONS:

Acid dissolution is easy to operate compared with the alkali fusion method. The results are consistent with those obtained by classical chemical analytical methods and thus meet the analytical requirements of sepiolite samples.

KEY WORDS: sepiolite, hydrofluoric acid-nitric acid-perchloric acid opening acid dissolution, aluminum, major elements, inductively coupled plasma-optical emission spectrometry

HIGHLIGHTS

(1) The contents of seven major elements in sepiolite were determined by inductively coupled plasma-optical emission spectrometry with acid digestion.

(2) The dosage of hydrofluoric acid was optimized.

(3) A series of high-magnesium mixed standard solutions were prepared to match the matrix and reduce interference.

本文参考文献

[1]

张巍. 海泡石吸附混合污染物和气态污染物的研究进展[J]. 中国矿业, 2019, 28(2): 126-132.

Zhang W. Research progress on sepiolite adsorption of mixed pollutants and gaseous pollutants[J]. China Mining Magazine, 2019, 28(2): 126-132.

[2]

王长远, 王功勋, 陶涛, 等. 海泡石功能化绿色建材研究进展与应用现状[J]. 硅酸盐通报, 2017, 36(10): 3285-3291.

Wang C Y, Wang G X, Tao T, et al. Research progress and application status of sepiolite functional green building materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3285-3291.

[3]

Shao M L, Ding L Z, Jing L Z, et al. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light[J].Journal of Environmental Sciences, 2017, 60: 43-52.

[4]

Zhang A, Mu B, Li H, et al. Cobalt blue hybrid pigment doped with magnesium derived from sepiolite[J]. Applied Clay Science, 2018, 157(1): 111-120.

[5]

方至萍, 廖敏, 张楠, 等. 施用海泡石对铅、镉在土壤-水稻系统中迁移与再分配的影响[J]. 环境科学, 2017, 38(7): 3028-3035.

Fang Z P, Liao M, Zhang N, et al. Effect of sepiolite application on the migration and redistribution of Pb and Cd in soil rice system in soil with Pb and Cd combined contamination[J]. Environmental Science, 2017, 38(7): 3028-3035.

[6]

谭建杰, 程琪林, 吴婷, 等. 海泡石提纯改性及在内墙涂覆材料中的应用研究[J]. 非金属矿, 2017, 40(3): 89-92.

Tan J J, Cheng Q L, Wu T, et al. Study on purification and modification of sepiolite and its application in interior wall coating materials[J]. Non-Metallic Mines, 2017, 40(3): 89-92.

[7]

刘立平, 董学林, 何海洋, 等. 高氯酸-氟化氢铵-硝酸密闭消解电感耦合等离子体质谱法测定页岩中稀土元素[J]. 冶金分析, 2018, 38(12): 13-18.

Liu L P, Dong X L, He H Y, et al. Determination of rare earth elements in shale by inductively coupled plasmamass spectrometry with perchloric acid-ammonium bifluoride-nitric acid closed digestion[J]. Metallurgical Analysis, 2018, 38(12): 13-18.

[8]

成学海, 夏传波, 郑建业, 等. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J]. 岩矿测试, 2017, 36(3): 231-238.

Cheng X H, Xia C B, Zheng J Y, et al. Simultaneous determination of 29 trace elements in tourmaline by inductively coupled plasma-mass spectrometry with sealed press acid decomposition[J]. Rock and Mineral Analysis, 2017, 36(3): 231-238.

[9]

刘宇, 魏双. 高压消解-电感耦合等离子体质谱法测定铌钽矿石中铌钽含量[J]. 地质调查与研究, 2018, 41(3): 74-76.

Liu Y, Wei S. Determination of niobium and tantalum content in Nb-Ta ore by high pressure digestion-inductively coupled plasma mass spectrometry[J]. Geological Survey and Research, 2018, 41(3): 74-76.

[10]

周存款, 潘炜燕, 乔小芳, 等. 熔融制样-X射线荧光光谱法测定硅酸盐样品中主量元素[J]. 矿产与地质, 2017, 31(5): 1004-1008.

Zhou C K, Pan W Y, Qiao X F, et al. Determination of major elements in silicate by X-ray fluorescence spectrometry with fusion sample preparation[J]. Mineral Resources and Geology, 2017, 31(5): 1004-1008.

[11]

阮桂色. 电感耦合等离子体原子发射光谱(ICP-AES)技术的应用进展[J]. 中国无机分析化学, 2011, 1(4): 15-18.

Ruan G S. Development and application of inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4): 15-18.

[12]

孙爽. 电感耦合等离子体原子发射光谱(ICP-AES)技术的应用进展[J]. 世界有色金属, 2017, (23): 233-235.

Sun S. Progress in application of inductively coupled plasma atomic emission spectroscopy[J]. World Nonferrous Metals, 2017, (23): 233-235.

[13]

Aydin I, Temel Z, Gunduz B, et al. Comparative deter-mination of phosphorus fractions in coastal surface sediment (NE Mediterranean Sea) by ICP-OES and UV/Vis spectrometry[J].Atomic Spectroscopy, 2018, 39(5): 193-197.

[14]

王树英, 左文家, 郭雅尘, 等. 电感耦合等离子体发射光谱(ICP-OES)法测定石灰石中5种氧化物含量[J]. 中国无机分析化学, 2019, 9(3): 17-22.

Wang S Y, Zuo W J, Guo Y C, et al. Determination of five oxides in limestone by inductively coupled plasma optical emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(3): 17-22.

[15]

李存根, 关漫漫, 郑建道, 等. 电感耦合等离子体原子发射光谱法测定铝镁环中硅锰铁钛铜磷[J]. 冶金分析, 2016, 36(3): 59-63.

Li C G, Guan M M, Zheng J D, et al. Determination of silicon, manganese, iron, titanium, copper and phosphorusin aluminum-magnesium ring by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 59-63.

[16]

Khaleel A I, Raoof A, Tuzen M, et al. Solid phase extraction containing multi-walled carbon nanotubes and eggshell membrane as adsorbent for ICP-OES determination of Pb(Ⅱ) and Cd(Ⅱ) in various water and orange fruit (peel and pulp) samples[J].Atomic Spectroscopy, 2018, 39(6): 235-241.

[17]

胡璇, 石磊, 张炜华, 等. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J]. 岩矿测试, 2017, 36(2): 124-129.

Hu X, Shi L, Zhang W H, et al. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129.

[18]

谢健梅, 王振新, 陈育人, 等. 电感耦合等离子体原子发射光谱法测定萤石中硅铝铁钾镁钛[J]. 冶金分析, 2017, 37(2): 30-35.

Xie J M, Wang Z X, Chen Y R, et al. Determination of silicon, aluminum, iron, potassium, magnesium and titanium in fluorspar by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(2): 30-35.

[19]

张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 47-52.

Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 47-52.

[20]

聂西度, 谢华林. 电感耦合等离子体原子发射光谱法测定金属镁中的杂质元素[J]. 冶金分析, 2012, 32(7): 79-82.

Nie X D, Xie H L. Determination of the impurity elements in magnesium by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012, 32(7): 79-82.

[21]

姜云军, 李星, 姜海伦, 等. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158.

Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158.

[22]

龙光花, 梅毅, 杨加强, 等. 电感耦合等离子体原子发射光谱法测定湿法磷酸中8种元素[J]. 冶金分析, 2017, 37(6): 55-60.

Long G H, Mei Y, Yang J Q, et al. Determination of eight elements in wet-process phosphoric acid by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 55-60.

[23]

曹磊, 陈微微, 高孝礼, 等. 基体干扰对ICP-AES分析土壤样品中主、次量元素的影响研究[J]. 光谱学与光谱分析, 2016, 36(7): 2260-2265.

Cao L, Chen W W, Gao X L, et al. Research on the matrix interference on major and minor elements in soil samples with ICP-AES[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2260-2265.

[24]

王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁[J]. 岩矿测试, 2012, 31(3): 442-445.

Wang X Q. Simultaneous quantification of K, Na, Ca, Mg, AI, Ti and Fe in feldspar samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2012, 31(3): 442-445.

[25]

郭中宝, 张艳妮, 代铮, 等. 电感耦合等离子体发射光谱法测定硼硅酸盐玻璃中的硼等常见元素[J]. 岩矿测试, 2015, 34(1): 55-59.

Guo Z B, Zhang Y N, Dai Z, et al. Determination of boron and other common elements in borosilicate glass by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 55-59.

相似文献(共20条)

[1]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[2]

张楠, 徐铁民, 吴良英, 魏双, 方蓬达, 王家松. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

[3]

王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁. 岩矿测试, 2012, 31(3): 442-445.

[4]

刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896.

[5]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[6]

刘昌岭, 林学辉. 单道扫描电感耦合等离子体发射光谱法测定珊瑚礁中主量和微量元素. 岩矿测试, 2003, (3): 225-227.

[7]

张超, 李享. 电感耦合等离子体发射光谱法测定镍矿石中镍铝磷镁钙. 岩矿测试, 2011, 30(4): 473-476.

[8]

吴迎春, 岳宇超, 聂峰. 电感耦合等离子体发射光谱法测定磷矿石中磷镁铝铁. 岩矿测试, 2014, 33(4): 497-500.

[9]

王梅英, 李鹏程, 李艳华, 李莹, 王留芳, 陈静. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析. 岩矿测试, 2013, 32(6): 909-914.

[10]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[11]

李鹏程, 王梅英, 李艳华, 张明炜, 刘春霞, 王冀艳, 刘勉, 陈冲科, 鲁鲲, 李振. 熔融制样X射线荧光光谱法测定珍珠岩矿中主量元素. 岩矿测试, 2015, 34(1): 104-110. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

[12]

薛芳, 刘春华, 夏心泉, 赵书林. 6─溴─苯并噻唑偶氮变色酸双波长标准加入法同时测定铁和铝的研究. 岩矿测试, 1996, (3): 217-221.

[13]

王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证. 岩矿测试, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006

[14]

李迎春, 周伟, 王健, 屈文俊. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素. 岩矿测试, 2013, 32(2): 249-253.

[15]

温宏利, 马生凤, 马新荣, 王蕾, 范凡, 巩爱华. 王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素. 岩矿测试, 2011, 30(5): 566-571.

[16]

郭振华. 电感耦合等离子体发射光谱法测定磷矿石中常量元素硅磷硫钙镁铝铁钛锰. 岩矿测试, 2012, 31(3): 446-449.

[17]

胡顺峰, 王霞, 郭合颜, 金伟. 电感耦合等离子体发射光谱法测定红土镍矿石中镍铬镁铝钴. 岩矿测试, 2011, 30(4): 465-468.

[18]

侯天平, 王璞珺, 王松君, 常平. 电感耦合等离子体发射光谱法直接测定黄铜矿中多元素. 岩矿测试, 2004, (3): 228-230.

[19]

詹秀春, 樊兴涛, 巩爱华. 偏振激发-能量色散X射线荧光光谱法测定卤水中主量元素硫氯钾钙. 岩矿测试, 2007, 26(2): 109-112.

[20]

赵良成, 郭秀平, 胡艳巧, 程文翠, 王磊, 马会春. 碳酸钠碱熔-电感耦合等离子体发射光谱法测定石墨中的常量元素硅铝钙镁铁钛锰磷. 岩矿测试, 2015, 34(3): 308-313. doi: 10.15898/j.cnki.11-2131/td.2015.03.008

计量
  • PDF下载量(21)
  • 文章访问量(194)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分

王力强, 王家松, 徐铁民, 吴良英, 曾江萍, 郑智慷, 魏双