【引用本文】 宋中华, 陆太进, 唐诗, 等. 高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征[J]. 岩矿测试, 2020, 39(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201905200067
SONG Zhong-hua , LU Tai-jin , TANG Shi , et al. Discrimination of HPHT-treated Type Ia Cape Diamonds Using Optical and Photoluminescence Spectroscopic Techniques[J]. Rock and Mineral Analysis, 2020, 39(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201905200067

高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征

1. 国家珠宝玉石质量监督检验中心沈阳实验室, 辽宁 沈阳 110013;

2. 国家珠宝玉石质量监督检验中心, 北京 100013

收稿日期: 2018-12-19  修回日期: 2019-07-01 

基金项目: 国家自然科学基金项目(41473030,41272086);国家珠宝玉石质量监督检验中心科研基金项目(NGTCQT180011)

作者简介: 宋中华,硕士研究生,高级工程师,研究方向为珠宝鉴定、天然、合成和处理钻石的研究及鉴定。E-mail:songzh@ngtc.com.cn。。

Discrimination of HPHT-treated Type Ia Cape Diamonds Using Optical and Photoluminescence Spectroscopic Techniques

1. National Gemstone Testing Center, Shenyang 110013, China;

2. National Gemstone Testing Center, Beijing 100013, China

Received Date: 2018-12-19
Revised Date: 2019-07-01

摘要:Ⅱa型钻石的高温高压改色及褪色研究已开展了大量工作,然而对Ⅰa型Cape系列褐色钻石在高温高压处理条件下的行为尚不明确。为解析实验室钻石鉴定工作中遇到的黄色钻石颜色成因问题,本文选取了Ⅰa型Cape系列褐色钻石作为研究对象,进行高温高压改色处理实验,并对处理前后的样品的紫外可见吸收光谱、红外吸收光谱以及光致发光光谱等谱学特征进行对比分析。结果表明:经高温高压改色处理后,钻石颜色由灰褐色变为褐黄色,钻石的红外吸收光谱、紫外可见吸收光谱和光致发光光谱也发生了很大改变。经处理的褐色钻石,其紫外可见吸收光谱中除原有的415nm和477nm吸收外,还产生503.2nm吸收,同时550nm至短波的吸收增强,钻石因此由原来的灰褐色变为褐黄色;红外吸收光谱中,1498、1520、1547cm-1三个峰变为一个以1498cm-1为中心的吸收宽峰;光致发光光谱中,产生了明显的H3(503.2nm)以及H2(986.2nm)缺陷。本研究获得的光谱变化特征为准确鉴定高温高压改色处理的Cape型钻石提供了依据,也为更好地理解晶格中氮、氢等相关的格子缺陷在高温高压条件下的变化机理提供了实验数据和分析。

关键词: Cape型褐色钻石, 高温高压处理, 缺陷, 鉴定, 红外吸收光谱, 紫外可见吸收光谱, 光致发光光谱

Discrimination of HPHT-treated Type Ia Cape Diamonds Using Optical and Photoluminescence Spectroscopic Techniques

KEY WORDS: Cape brown diamond, high pressure and high temperature process, lattice defects, identification, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectra, photoluminescence spectroscopy

本文参考文献

[1]

Hainschwang T.HPHT treatment of different classes of typeⅠ brown diamond[J].Journal of Gemmology,2005,29(5/6):261-273.

[2]

King JM,Shigley J E,Gelb T H,et al.Characterization and grading of natural-color yellow diamonds[J].Gems & Gemology,2005,41(2):88-115.

[3]

宋中华,魏华,田晶.钻石辨假[M].北京:文化出版社,2017. Song Z H,Wei H,Tian J.Identification of Diamonds[M].Beijing:Cultural Development Press,2017.

[4]

Collins A T.The colour of diamond and how it may be changed[J].Journal of Gemmology,2001,27(6):341-359

[5]

Schmetzer K.Clues to the process used by general electric to enthance the GE Pol diamonds[J].Gems &Gemology,1999,35(4):186-190.

[6]

Fisher D,Spits R A.Spectroscopic Evidence of GE Pol HPHT-treated Natural Type Ⅱa Diamonds[J].Gems & Gemology,2000,36(1):42-49.

[7]

Reinitz I M,Buerki P R,Shigley J E,et al.Identification of HPHT-treated yellow to green diamonds[J].Gems & Gemology,2000,36(2):128-137.

[8]

Collins A T,KandaH,Kitawaki H.Colour changes pro-duced in natural brown diamonds by high-pressure,high-temperature treatment[J].Diamond and Related Materials,2000,9:113-122.

[9]

宋中华,陆太进,苏隽等.无色-近无色高温高压合成钻石的谱图特征及其鉴别方法[J].岩矿测试,2016,35(5):496-504.

Song Z H,Lu T J,Su J,et al.The spectral characteristics and identification techniques for colorless and near-colorless HPHT synthetic diamonds[J].Rock and mineral analysis,2016,35(5):496-504.

[10]

Schmetzer K.High pressure and high temperature treatment of diamonds-A review of the patent literature from five decades[J].The journal of gemmology,2010,32(1-4):52-65.

[11]

Fisher D.Brown diamonds and high pressure high tem-perature treatment[J].Lithos,2009,112S:619-624.

[12]

宋中华,陆太进,苏隽,等.利用吸收和发光光谱技术分析高温高压处理天然富氢钻石的鉴定特征[J].岩矿测试,2018,37(1):64-69.

Song Z H,Lu T J,Su J,et al.Identification of HPHT-treated hydrogen-rich diamonds optical absorption and photo Luminescence spectroscopic techniques[J].Rock and mineral analysis,2018,37(1):64-69.

[13]

宋中华,陆太进,苏隽,等.不同类型褐色钻石的高温高压处理结果初析[C]//中国国际珠宝首饰学术交流会论文集,2017:15-17. Song Z H,Lu T J,Su J,et al.HPHT-treated Experiment for Different Types of Brown Diamonds[C]//Proceedings of China International Gems & Jewelry Academic Conference,2017:15

-17.

[14]

DeWeerdt F,Collions A T.The influence of pressure on high-pressure,high-temperature annealing of type Ⅰa diamond[J].Diamond and Related Materials,2003,12:507-510.

[15]

Collions A T.The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy[J].Diamond and Related Materials,2003,12:1976-1983.

[16]

Fritsch E,Hainschwang T,Massi L,et al.Hydrogen-related optical centers in natural diamond-An update[J].New Diamond and Frontier Carbon Technology,2007,17(2):63-89.

[17]

Breeding C M,Eaton-Magaña S,Shigley J E.Natural-color green diamonds:A beautiful conundrum[J].Gems & Gemology,2018,54(1):2-27.

[18]

Fritsch E,Scarratt K V G.Optical properties of some natural diamonds with high hydrogen content[J].Diamond Optic Ⅱ,1989,1146:201-206.

[19]

Massi L,Fritsch E,Collins A T,et al.The "amber centres" and their relation to the brown colour in diamond[J].Diamond and Related Materials,2005,14:1623-1629.

[20]

Dobrinets I A,Vins VG,Zaitsev A M.HPHT-TreatedDiamonds[EB/OL].2013.

[21]

Baker J M.A new proposal for the structure of platelets in diamond.Diamond and Related Materials,1998,7:1282-1290.

[22]

Goss J P,Briddon P R,Hill V,et al.Identification of the structure of the 3107 cm-1 H-related defect in diamond[J].Journal of Physics:Condensed Matter,2014,26:1-6.

[23]

Woods G S.Platelets and infrared absorption of type Ⅰa diamonds[J].Proc.R.Sco.Lond,1986,A 407:219-238.

[24]

Hainschwang T,Fritsch E,Massi L,et al.The C center isolated nitrogen-related infrared absorption at 2688 cm-1:Perfect harmony in diamond[J].Journal of Applied Spectroscopy,2012,79(5):737-743.

[25]

Tretiakova L.Spectroscopic methods for the identification of natural yellow gem-quality diamonds[J]. Eur J Mineral,2009,21:43-50.

[26]

Buerki P R,Reinitz I M,Muhlmeister S,et al.Observation of the H2 defect in gem-quality type Ⅰa diamond[J].Diamond and Related Materials,1999,8:1061-1066.

[27]

Hainschwang T,Notari F,Fritsch E,et al.Natural,un-treated diamonds showing the A,B and C infrared absorptions ("ABC diamonds"),and the H2 absorption[J]. Diamond and Related Materials,2006,15:1555-1564.

[28]

Goss J P,Jones R.Properties,Growth and Applications of Diamond[M].London:INSPEC,IEEE,2001.

[29]

Collions A T.Vacancy enhanced aggregation of nitrogen in diamond[J].J.Phys.C:Solid St.Phys.,1980,13:2641-2650.

[30]

Wang W Y,Mose T M.Gem quality CVD synthetic dia-monds from gemesis[J].Gems & Gemology,2011,71(3):227-228.

相似文献(共19条)

[1]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[2]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[3]

邵惠萍, 严雪俊, 严俊, 王金, 余思逸, 彭秋瑾, 胡仙超. 应用傅里叶变换红外光谱与紫外可见吸收光谱鉴别两类海水养殖灰色珍珠. 岩矿测试, 2019, 38(5): 489-496. doi: 10.15898/j.cnki.11-2131/td.201809280109

[4]

杜谷, 杨乐山, 冉敬, 熊及滉. 关于检出限的定义及分类的探讨. 岩矿测试, 2008, 27(2): 155-157.

[5]

王成云, 谢意红. 不同颜色翡翠的微量元素及红外光谱特征. 岩矿测试, 2003, (3): 183-187.

[6]

孙海涛, 吕淑红. BJKF-1型便携式近红外矿物分析仪在宝玉石鉴定中的应用. 岩矿测试, 2008, 27(6): 418-422.

[7]

周彦, 亓利剑, 戴慧, 张青, 蒋小平. 安徽马鞍山磷铝石宝石矿物学特征研究. 岩矿测试, 2014, 33(5): 690-697.

[8]

郭立鹤, 吴淑琪. 傅立叶红外光谱技术在翡翠研究中的应用. 岩矿测试, 1997, (4): 250-254.

[9]

邹耀辛, 林维峰, . 天然水晶片中双晶纹的成因及其鉴定意义. 岩矿测试, 2002, (1): 66-.

[10]

鲍雪, 陆太进, 魏然, 张勇, 李海波, 陈华, 柯捷. 表面接触角的测量及表面张力在宝玉石鉴定中的应用. 岩矿测试, 2014, 33(5): 681-689.

[11]

赵爱林, 林维峰, 迟广成. 水晶中裂隙成因及其鉴定意义. 岩矿测试, 2005, (4): 317-318.

[12]

徐万臣, 邹耀辛, 迟广成, 林维峰. 深色天然烟晶中内含物的成因及其鉴定意义. 岩矿测试, 2005, (1): 62-64.

[13]

申柯娅. 天然祖母绿与合成祖母绿的成分及红外吸收光谱研究. 岩矿测试, 2011, 30(2): 233-237.

[14]

王小松, 陈曦, 王小强, 何沙白, 杨光宇. 高频燃烧-红外吸收光谱法测定钼矿石和镍矿石中的高含量硫. 岩矿测试, 2013, 32(4): 581-585.

[15]

姚金玉, 蒋永清. 硼的原子吸收光谱法测定. 岩矿测试, 1988, (4): 323-326.

[16]

米瑞华. 镓的原子吸收光谱分析进展. 岩矿测试, 1996, (1): 53-57.

[17]

米瑞华. 铋的原子吸收光谱分析进展. 岩矿测试, 1997, (4): 277-283.

[18]

谭春华, 汤志勇. 铊的原子吸收光谱分析进展. 岩矿测试, 2000, (2): 129-133.

[19]

杨军红, 陈双聘, 刘平, 李国华, 刘晓燕, 庞晓辉. 铜合金可见光谱特征及其应用. 岩矿测试, 2006, 25(4): 337-340.

计量
  • PDF下载量(3)
  • 文章访问量(58)
  • 被引次数(0)
目录

Figures And Tables

高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征

宋中华, 陆太进, 唐诗, 高博, 苏隽, 柯捷