【引用本文】 贺攀红, 杨珍, 龚治湘, . 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048
HE Pan-hong, YANG Zhen, GONG Zhi-xiang. Simultaneous Determination of Trace Arsenic, Copper, Lead, Zinc, Nickel and Vanadium in Soils by Hydride Generation-Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒

1. 

河南省核工业地质局, 河南 郑州 450044

2. 

河南省核工业放射性核素检测中心, 河南 郑州 450044

3. 

东华理工大学化学生物与材料科学学院, 江西 抚州 344000

收稿日期: 2019-04-16  修回日期: 2019-08-14  接受日期: 2019-10-21

作者简介: 贺攀红, 本科, 高级工程师, 主要从事岩矿分析。E-mail:hepanhong1983@163.com

Simultaneous Determination of Trace Arsenic, Copper, Lead, Zinc, Nickel and Vanadium in Soils by Hydride Generation-Inductively Coupled Plasma-Optical Emission Spectrometry

1. 

Henan Province Nuclear Industry Geology Bureau, Zhengzhou 450044, China

2. 

Henan Radionuclide Detection Center of Nuclear Industry, Zhengzhou 450044, China

3. 

School of Chemistry, Biology and Material Science, East China University of Technology, Fuzhou 344000, China

Received Date: 2019-04-16
Revised Date: 2019-08-14
Accepted Date: 2019-10-21

摘要:土壤中砷的测定方法多采用氢化物发生-原子荧光光谱法(HG-AFS);电感耦合等离子体发射光谱法(ICP-OES)在多元素同时测定方面应用普遍,但测定砷的检出限稍高。氢化物发生技术与ICP-OES两者联用也多有研究,较大幅度降低了砷的检出限,已能实现砷锑铋汞等元素的同时测定。但联用技术只能应用于测定能够发生氢化反应的元素,无法实现易氢化元素和难氢化元素的同时测定。本文通过改进ICP-OES仪器的进样装置,采用氢化反应气与ICP-OES雾化气双管路同时进样的方法,实现了一次溶样、一台设备同步测定样品中的砷和多种金属元素。土壤样品经氢氟酸、硝酸、高氯酸、盐酸溶解后,用10%盐酸提取,用硫脲-抗坏血酸溶液将砷元素预还原为+3价后双流路同时进样测定。对于溶液中共存的离子,高于1.0mg/L的La和Dy对砷测定有干扰;低于50.0mg/L的K、Na、Ca、Mg、Fe,低于20.0mg/L的Pb、Mo、Zn、Cu、Ba、Ti、Mn、Ni、Sr、V、Cr,低于10.0mg/L的Co、Ag、U、Cd、Li、Au对砷测定无影响。本方法提高了砷的测定灵敏度,又充分利用多元素同测的优势,实现了同时测定易氢化的痕量砷和难氢化的铜、铅、锌、镍、钒等元素。方法精密度高(RSD < 5%),经土壤标准物质验证方法可靠,适合痕量砷与其他元素的同步测定。

关键词: 土壤, , 金属元素, 同时测定, 氢化物发生, 电感耦合等离子体发射光谱法

要点

(1) 改造进样装置使其兼具进雾化气、氢化反应气和排废液的功能。

(2) 详细研究了共存离子的影响,La和Dy干扰As的测定。

(3) 实现HG与ICP-OES同时工作,达到同时测定As与多种金属元素。

(4) 为易氢化元素与多金属元素的同时测定提供了一种研究思路。

Simultaneous Determination of Trace Arsenic, Copper, Lead, Zinc, Nickel and Vanadium in Soils by Hydride Generation-Inductively Coupled Plasma-Optical Emission Spectrometry

ABSTRACT

BACKGROUND:

Hydride generation-atomic fluorescence spectrometry (HG-AFS) is widely used for the determination of arsenic in soil. Inductively coupled plasma-optical emission spectrometry (ICP-OES) is widely used in the simultaneous determination of multiple elements, but the detection limit of arsenic is slightly higher. The combination of hydride generation technology and ICP-OES has been widely studied, which can greatly reduce the detection limit of arsenic and yield the simultaneous determination of arsenic, antimony, bismuth, mercury and other elements. However, the combination technology can only be used to determine easy hydrogenation elements but it cannot simultaneously determine easy hydrogenation elements and difficult hydrogenation elements.

OBJECTIVES:

To obtain the simultaneous determination of arsenic and various metal elements in samples by one dissolved sample and one apparatus.

METHODS:

The soil samples were dissolved by hydrofluoric acid, nitric acid, perchloric acid and hydrochloric acid, followed by the addition of thiourea ascorbic acid solution to reduce arsenic to +3, by using 10% hydrochloric acid as the dissolving medium. The elements were determined by double flow method at the same time.

RESULTS:

For the coexisting ions in the solution, La and Dy higher than 1.0mg/L had interference on the determination of arsenic. These elements had no effect on the determination of arsenic, when K, Na, Ca, Mg, and Fe concentrations were lower than 50.0mg/L, Pb, Mo, Zn, Cu, Ba, Ti, Mn, Ni, Sr, V, when Cr concentrations were lower than 20.0mg/L, and Co, Ag, U, Cd, Li, Au concentrations were lower than 10.0mg/L.

CONCLUSIONS:

This method improves the sensitivity of arsenic and has the advantages of multi-element simultaneous determination. It can simultaneously determine trace arsenic and difficult hydrogenation elements such as copper, lead, zinc, nickel, and vanadium. The relative standard deviation (RSD) of the method is less than 5%. This method is confirmed by soil standard materials and is proved to be reliable and suitable for the simultaneous determination of trace arsenic and other elements.

KEY WORDS: soil, arsenic, metal elements, simultaneous determination, hydride-generation determination, inductively coupled plasma-optical emission spectrometry

HIGHLIGHTS

(1) Injection device for ICP-OES was improved to have the functions of introducing atomization gas, hydrogeneration reaction gas, and liquid discharge.

(2) The influence of coexisting ions and the interference of La and Dy on the determination of As were studied.

(3) HG and ICP-OES can be operated simultaneously for the simultaneous determination of As and multiple metal elements.

(4) The method provided a novel approach for the simultaneous determination of easy hydrogenation elements and multiple metal elements.

本文参考文献

[1]

王微. 火焰原子吸收法连续测定土壤样品中的铜、铅、锌、钴、镍[J]. 有色矿冶, 2010, 26(2): 57-59.

Wang W. Sequential determination of Cu, Pb, Zn, Co and Ni in soil samples by flame atomic absorption spectrometry[J]. Non-Ferrous Mining and Metallurgy, 2010, 26(2): 57-59.

[2]

胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388-395.

Hu J P, Wang R Z, Du B H, et al. Determination of silver, copper, lead and zinc in sulfide ores by flame atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395.

[3]

Alothman Z A, Habila M A, Yilmaz E, et al. Ultrasound-assisted supramolecular microextraction of copper in water, food, hair, and tobacco samples prior to microsampling flame atomic absorption spectrometry[J]. Atomic Spectroscopy, 2018, 39(3): 106-111.

[4]

Habila M A, Alothman Z A, Yilmaz E, et al. Dispersive liquid-liquid microextraction of lead(Ⅱ) as tropaeolin OOO chelates from environmental samples prior to microsampling flame atomic absorption spectrometry[J].Atomic Spectroscopy, 2018, 39(3): 112-117.

[5]

陈娜, 任楠. 电感耦合等离子体发射光谱法测定土壤中重金属[J]. 云南地质, 2019, 38(1): 141-144.

Chen N, Ren N. On the testing of the heavy matel in soil with induction coupled plasma emission spectrometry[J]. Yunnan Geology, 2019, 38(1): 141-144.

[6]

沙艳梅, 赵学沛, 张歌, 等. 多向观测电感耦合等离子体发射光谱法同时测定土壤和水系沉积物中常量和微量元素[J]. 岩矿测试, 2008, 27(4): 291-294.

Sha Y M, Zhao X P, Zhang G, et al. Simultaneous determination of macro-amount and trace elements in soil and stream sediment samples by inductively coupled plasma-optical emission spectrometry with multi-direction viewing mode[J]. Rock and Mineral Analysis, 2008, 27(4): 291-294.

[7]

李星, 姜云军, 张宁, 等. 混合酸溶解-电感耦合等离子体原子发射光谱法测定土壤中17种元素[J]. 理化检验(化学分册), 2019, 55(3): 291-296.

Li X, Jiang Y J, Zhang N, et al. Determination of 17 elements in soil by inductively coupled plasma atomic emission spectrometry after dissolution with mixed acid[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(3): 291-296.

[8]

杨叶琴, 赵昌平, 赵杰, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J]. 理化检验(化学分册), 2019, 55(1): 63-67.

Yang Y Q, Zhao C P, Zhao J, et al. Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(1): 63-67.

[9]

陈秋生, 张强, 刘烨潼, 等. 电感耦合等离子体质谱法同时测定土壤中多种金属含量的研究[J]. 中国土壤与肥料, 2013, (4): 97-101.

Chen Q S, Zhang Q, Liu H T, et al. Study on simultaneous determination of multiple elements in soil with inductively coupled plasma mass spectrometry[J].Soil and Fertilizer Sciences in China, 2013, (4): 97-101.

[10]

于悦. 微波消解-电感耦合等离子体质谱法测定环境土壤中6种常量金属元素[J]. 化学分析计量, 2018, 27(4): 85-88.

Yu Y. Determination of six major metal elements in environmental soil by inductively coupled plasma mass spectrometry with microwave digestion[J]. Chemical Analysis and Meterage, 2018, 27(4): 85-88.

[11]

Tel-Cayan G, Ullah Z, Ozturk M, et al. Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS[J]. Atomic Spectroscopy, 2018, 39(1): 29-37.

[12]

刘江斌, 党亮, 殷桃刚, 等. 粉末压片-X射线荧光光谱法测定土壤中的铜铅锌砷锑钴铬镍等重金属元素[J]. 分析测试技术与仪器, 2015, 21(1): 42-46.

Liu J B, Dang L, Yin T G, et al. Determination of heavy metals elements copper, lead, zinc, arsenic, antimony, cobalt, chromium, and nickel in soil by X-ray fluorescence spectrometry with powder pelleting[J]. Analysis and Testing Technology and Instruments, 2015, 21(1): 42-46.

[13]

刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677.

Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677.

[14]

唐鹏, 李义连, 徐佳丽, 等. 王水水浴溶解-原子荧光法测定土壤中的砷和汞[J]. 安全与环境工程, 2019, 26(4): 50-55.

Tang P, Li Y L, Xu J L, et al. Determination of arsenic and mercury in soil dissolved by aquaregia in water bath digestion-atomic fluorescence spectrometry[J].Safety and Environmental Engineering, 2019, 26(4): 50-55.

[15]

马名扬, 张丽佳, 张朝阳, 等. 微波辅助提取-氢化物发生原子荧光光谱法测定土壤中无机砷[J]. 岩矿测试, 2007, 26(5): 372-376.

Ma M Y, Zhang L J, Zhang C Y, et al. Hydride generation-atomic fluorescence spectrometric determination of inorganic arsenic in soil samples with microwave-assisted extraction[J]. Rock and Mineral Analysis, 2007, 26(5): 372-376.

[16]

李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483.

Li Z Q, Hu S X, Li X Y, et al. Determination of As and Hg in survey samples of soil pollution by HG-AFS with water bath extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4): 480-483.

[17]

宋帅娣. 原子荧光光谱法同时测定农产品产地土壤中砷、汞[J]. 化学与黏合, 2018, 40(5): 377-379.

Song S D. Determination of arsenic and mercury in agricultural soil by hydride generation-atomic fluorescence Spectrometry[J]. Chemistry and Adhesion, 2018, 40(5): 377-379.

[18]

余海军, 张莉莉, 屈志朋, 等. 微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J]. 中国无机分析化学, 2019, 9(1): 1-4.

Yu H J, Zhang L L, Qu Z P, et al. Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 1-4.

[19]

胡汉青. 自动石墨消解-电感耦合等离子体质谱法测定土壤中砷、汞、硒、锑元素含量[J]. 分析仪器, 2019, (4): 23-26.

Hu H Q. Determination of arsenic, mercury, selenium and antimony in soil by automatic graphite digestion-ICP-MS[J]. Analytical Instrumentation, 2019, (4): 23-26.

[20]

余晓志, 沈杰平, 孙剑, 等. ICP-OES法同时测定功效牙膏中10中元素[J]. 分析试验室, 2016, 35(2): 197-200.

Yu X Z, Shen J P, Sun J, et al. Simultaneous determination of 10 elements in toothpaste by ICP-OES[J]. Chinese Journal of Analysis Laboratory, 2016, 35(2): 197-200.

[21]

孙晓慧, 李章, 刘希良, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J]. 冶金分析, 2014, 34(11): 56-60.

Sun X H, Li Z, Liu X L, et al. Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2014, 34(11): 56-60.

[22]

付慧敏, 周益奇, 王巧环, 等. 氢化物发生电感耦合等离子体原子发射光谱同时测定土壤中十四种微量元素[J]. 环境化学, 2013, 32(6): 1094-1095.

Fu H M, Zhou Y Q, Wang Q H, et al. Simultaneous determination of 14 trace elements in soil by hydride generation inductively coupled plasma atomic emission spectrometry[J]. Environmental Chemistry, 2013, 32(6): 1094-1095.

[23]

吴峥, 熊英, 王龙山, 等. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋[J]. 岩矿测试, 2015, 34(5): 533-538.

Wu Z, Xiong Y, Wang L S, et al. Determination of As, Sb and Bi in soil and stream sediment by a self-developed hydride generation system coupled with inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2015, 34(5): 533-538.

[24]

贺攀红, 吴领军, 杨珍, 等. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞[J]. 岩矿测试, 2013, 32(2): 240-243.

He P H, Wu L J, Yang Z, et al. Simultaneous determination of trace As, Sb, Bi and Hg in soils by hydride generation-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 240-243.

[25]

叶建平, 周西林. 氢化物发生-电感耦合等离子体原子发射光谱法测定球墨铸铁中砷、锑、铋[J]. 理化检验(化学分册), 2013, 49(9): 1073-1075.

Ye J P, Zhou X L. HG-ICP-AES determination of As, Sb, and Bi in ductile iron[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(9): 1073-1075.

[26]

汤大山, 李苗. 浅析硫脲-抗坏血酸溶液对水质砷的还原效率[J]. 广州化工, 2016, 44(7): 160-161.

Tang D S, Li M. Analysis of reduction efficiency of thiourea-ascorbic acid solution on the water quality arsenic[J]. Guangzhou Chemical Industry, 2016, 44(7): 160-161.

[27]

辛仁轩. 等离子体发射光谱分析[M] . 北京: 化学工业出版社, 2005: 86-87.

Xin R X. Plasma Emission Spectrum Analysis[M] . Beijing: Chemical Industry Press, 2005: 86-87.
[28]

赵庆令, 李清彩. iCAP6300电感耦合等离子体发射光谱仪的常规维护方法[J]. 岩矿测试, 2014, 33(5): 767-772.

Zhao Q L, Li Q C. The maintenance of iCAP6300 inductively coupled plasma-atomic emission spectrometer[J]. Rock and Mineral Analysis, 2014, 33(5): 767-772.

[29]

戴亚明. 电感耦合等离子体原子发射光谱仪器的安装准备及故障判别[J]. 现代科学仪器, 2012, (6): 165-172.

Dai Y M. Solution for outstanding preparation of installation, general troubleshooting and common testing problems of ICP-OES[J]. Modern Scientific Instruments, 2012, (6): 165-172.

[30]

王艳洁, 那广水, 王震, 等. 检出限的涵义和计算方法[J]. 化学分析计量, 2012, 21(5): 85-88.

Wang Y J, Na G S, Wang Z, et al. Connotation and calculation methods of detection limit[J]. Chemical Analysis and Meterage, 2012, 21(5): 85-88.

相似文献(共20条)

[1]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

杨晓慧, 李海维, 韩权. 4-(5-硝基-2-吡啶偶氮)-1,3-二氨基苯光度法同时测定钴和钯. 岩矿测试, 2008, 27(2): 113-116.

[4]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[5]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[6]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[7]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[8]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[9]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[10]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[11]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[12]

王惠萍, 郑若锋, 郑大中. 氢化物发生及其在分析检测领域的应用. 岩矿测试, 2008, 27(1): 55-59.

[13]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[14]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[15]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[18]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[19]

王洪彬. 氢化物发生-原子荧光光谱法测定面粉中微量砷. 岩矿测试, 2007, 26(6): 503-504.

[20]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

计量
  • PDF下载量(22)
  • 文章访问量(273)
  • HTML全文浏览量(65)
  • 被引次数(0)
目录

Figures And Tables

氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒

贺攀红, 杨珍, 龚治湘