【引用本文】 顾华, 单晓锋, 崔君, 等. 应用连续流动分析法测定高盐地下水中的挥发酚[J]. 岩矿测试, 2019, 38(5): 518-523. doi: 10.15898/j.cnki.11-2131/td.201902210024
GU Hua, SHAN Xiao-feng, CUI Jun, et al. Determination of Phenol in Hypersaline Groundwater by Continuous Flow Analysis Method[J]. Rock and Mineral Analysis, 2019, 38(5): 518-523. doi: 10.15898/j.cnki.11-2131/td.201902210024

应用连续流动分析法测定高盐地下水中的挥发酚

1. 

上海市地质调查研究院, 上海 200072

2. 

国土资源部上海资源环境监督检测中心, 上海 200072

收稿日期: 2019-02-21  修回日期: 2019-05-10  接受日期: 2019-07-16

基金项目: “上海市地面沉降及地质环境长期监测(2018)”项目

作者简介: 顾华, 工程师, 主要从事地下水测试及研究。E-mail:454935619@qq.com

Determination of Phenol in Hypersaline Groundwater by Continuous Flow Analysis Method

1. 

Shanghai Institute of Geological Survey, Shanghai 200072, China

2. 

Shanghai Resources Environment Supervision and Inspection Center, Ministry of Land and Resources, Shanghai 200072, China

Received Date: 2019-02-21
Revised Date: 2019-05-10
Accepted Date: 2019-07-16

摘要:应用连续流动分析法测定氯化物或硝酸盐含量高于0.4g/L的地下水样品中的挥发酚,存在较为严重的基质干扰,在线蒸馏过程中生成了大量的氯化氢和二氧化氮气体,导致冷凝后的馏出液酸性强,造成缓冲溶液失效。另外,当水中含盐量超过0.15%时,蒸馏器管路易堵塞,使该方法无法得到广泛的应用。本文采用3%磷酸二氢钾和3%柠檬酸作为蒸馏试剂,可消除20g/L氯化物和1g/L硝酸盐的干扰。同时采用50%甘油水溶液作为蒸馏试剂溶剂,能够缓解蒸馏器系统管路堵塞的问题,可以测定含盐量低于40g/L的地下水。该方法测定地下水中的挥发酚在0.002~0.100mg/L浓度范围内线性关系良好,相关系数达到0.9999,实际样品的加标回收率为95.2%~104.6%,相对标准偏差(RSD,n=6) < 5%,方法检出限为0.001mg/L,适用于批量测定地下水样中的挥发酚。

关键词: 地下水, 挥发酚, 连续流动分析法, 含盐量, 硝酸盐, 酸度

要点

(1) 揭示了水中高含量氯化物和硝酸盐对检测挥发酚的影响。

(2) 通过优化实验条件,消除了检测干扰和蒸馏器系统管路堵塞问题。

(3) 本方法可以测定含盐量低于40g/L的地下水中的挥发酚。

Determination of Phenol in Hypersaline Groundwater by Continuous Flow Analysis Method

ABSTRACT

BACKGROUND:

Determination of phenol by the continuous flow analysis method is seriously compromised if the contents of chlorides or nitrates are greater than 0.4g/L in groundwater. Large amounts of HCl and NO2 during in situ distillation increase the acidity of product after condensation and cause the failure of buffer solution. In addition, distiller pipes can be easily blocked when the salt content is greater than 0.15% in groundwater. Current methods cannot be widely used because of these limitations.

OBJECTIVES:

To establish an easy and convenient way to detect phenol, especially in groundwater samples with high salt content.

METHODS:

Using 3% KH2PO4 and 3% citric acid solution as distillation solvents eliminated the interferences caused by chlorides (≤ 20g/L) and nitrates (≤ 1g/L). 50% glycerol used as the solvent of distillation reagent alleviated the pipeline blockage in the distiller. This method can be applied to determine groundwater samples with a salinity content of less than 40g/L.

RESULTS:

The calibration curve showed good linearity with the correlation coefficient higher than 0.9999 in the range of 0.002-0.100mg/L. The recoveries obtained by adding phenol standards to samples ranged from 95.2% to 104.6%. The relative standard deviation (n=6) was less than 5%. The method detection limit was 0.001mg/L.

CONCLUSIONS:

The method is suitable for the determination of phenol in high salt groundwater samples.

KEY WORDS: groundwater, phenol, continuous flow analysis, sality, nitrate, acity

HIGHLIGHTS

(1) The influence of high-content chlorides or nitrates in groundwater on the detection of phenols was demonstrated.

(2) The problems of detection interference and distiller blockage were eliminated by optimizing the experimental conditions.

(3) This method could be used to determine volatile phenols in groundwater with salt content of less than 40g/L.

本文参考文献

[1]

刘红霞, 李琼. 环境介质中挥发酚的监测技术现状与展望[J]. 环境科学与管理, 2012, 37(6): 132-137.

Liu H X, Li Q. Present status and prospects on monitoring technology of volatile phenols in environmental medium[J]. Environmental Science and Management, 2012, 37(6): 132-137.

[2]

刘娇, 吴淑琪, 贾静, 等. 地质环境样品中挥发酚分析现状与进展[J]. 分析测试学报, 2015, 34(3): 367-374.

Liu J, Wu S Q, Jia J, et al. Review on analytical methods of volatile phenols in geoenvironmental samples[J]. Journal of Instrumental Analysis, 2015, 34(3): 367-374.

[3]

王琳, 韦锋, 曾健华, 等. 水中挥发酚的测定方法比较[J]. 化学与生物工程, 2019, 36(2): 65-68.

Wang L, Wei F, Zeng J H, et al. Comparison of determination method of volatile phenol in water[J]. Chemistry & Bioengineering, 2019, 36(2): 65-68.

[4]

秦樊鑫, 张明时, 陈文生, 等. 气相色谱法测定工业废水中挥发酚[J]. 理化检验(化学分册), 2008, 44(7): 608-610.

Qin F X, Zhang M S, Chen W S, et al. GC determination of volatile phenols in industrial waste water[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2008, 44(7): 608-610.

[5]

田芹, 江林, 王丽平, 等. 水体中挥发酚测定中的流动注射分光光度法研究进展[J]. 岩矿测试, 2010, 29(2): 161-168.

Tian Q, Jiang L, Wang L P, et al. Progresses and application of flow injection analysis spectrophotometric determination of volatile phenols in water[J]. Rock and Mineral Analysis, 2010, 29(2): 161-168.

[6]

叶玲. 4-氨基安替比林分光光度法测定水中挥发酚主要问题的探讨[J]. 污染防治技术, 2017, 30(2): 63-65.

Ye L. Discussion on the main problems in determining volatile phenolic compounds in water by using 4-aminoantipyrine spectrophotometric method[J]. Pollution Control Technology, 2017, 30(2): 63-65.

[7]

王昌远. 氨基安替比林分光光度法测定水中挥发酚主要问题的探讨[J]. 农家参谋, 2018, 36(17): 244, 253.

Wang C Y. Discussion on the main problems in determining volatile phenolic compounds in water by using aminoantipyrine spectrophotometric method[J]. The Farmers Consultant, 2018, 36(17): 244, 253.

[8]

陈固魁. 浅谈水中挥发酚测定应注意的影响因素[J]. 广州化工, 2018, 46(9): 76-77.

Chen G K. Discussion on influence factors in determination of volatile phenol in water[J]. Guangzhou Chemical Industry, 2018, 46(9): 76-77.

[9]

戴博森, 石新政, 陈欣娟, 等. 新型显色剂在挥发酚测定中的应用[J]. 工业水处理, 2018, 38(4): 87-90.

Dai B S, Shi X Z, Chen X J, et al. Application of the new-type chromogenic agent to the determination of volatile phenol[J]. Industrial Water Treatment, 2018, 38(4): 87-90.

[10]

李嘉菲. 海水中挥发性酚的分析方法优化研究[J]. 环境保护与循环经济, 2019, 23(1): 77-80.

Li J F. Study on optimization of analytical methods for volatile phenols in seawater[J]. Environmental Protection and Circular Economy, 2019, 23(1): 77-80.

[11]

阮佳斐, 顾海欣, 杨玉萍, 等. 浅谈水体中挥发酚两种常用的监测方法[J]. 广州化工, 2019, 47(3): 107-108.

Ruan J F, Gu H X, Yang Y P, et al. Discussion on two widely used test methods of volatile phenol in water[J]. Guangzhou Chemical Industry, 2019, 47(3): 107-108.

[12]

车淑红, 秦伟. 水中挥发酚测定方法比对实验[J]. 水利技术监督, 2016, 24(1): 4-6.

Che S H, Qin W. Comparison of determination methods of volatile phenols in water[J]. Technical Supervision in Water Resources, 2016, 24(1): 4-6.

[13]

王红云, 王安群, 周敏, 等. 挥发酚的气相色谱分析法研究[J]. 环境保护科学, 2008, 34(4): 58-60.

Wang H Y, Wang A Q, Zhou M, et al. Research on the gas chromatograph of volatile phenol[J]. Enviromental Protection Science, 2008, 34(4): 58-60.

[14]

俞涛, 张瑞云, 蒋雪凤, 等. 超高效液相色谱法同时测定饮用水中4种挥发酚[J]. 中国卫生检验杂志, 2018, 28(13): 1554-1556.

Yu T, Zhang R Y, Jiang X F, et al. Determination of 4 volatile phenols in drinking water by ultra high performance liquid chromatography[J]. Chinese Journal of Health Laboratory Technology, 2018, 28(13): 1554-1556.

[15]

张连群, 张文珠, 何纯定, 等. 流动注射法同时检测水中挥发酚和氰化物[J]. 中国食品卫生杂志, 2018, 30(1): 49-53.

Zhang L Q, Zhang W Z, He C D, et al. Study on the simultaneous determination of volatile phenol and cyanide in the tap water by flow injection analysis[J]. Chinese Journal of Food Hygiene, 2018, 30(1): 49-53.

[16]

李文, 刘昆善, 鲁松, 等. 流动注射分析仪检测水中挥发酚时假阳性的去除[J]. 中国给水排水, 2018, 34(14): 113-114.

Li W, Liu K S, Lu S, et al. Removal of false positives by flow injection analysis of volatile phenols in water[J]. China Water & Wastewater, 2018, 34(14): 113-114.

[17]

刘茂青. 连续流动注射法测定水中挥发酚的含量[J]. 广州化工, 2011, 39(14): 124-125.

Liu M Q. Determination volatile phenol in water by continuous flow injection analysis[J]. Guangzhou Chemical Industry, 2011, 39(14): 124-125.

[18]

郑素琴. SKALAR San++型连续流动分析仪测定水中挥发酚的方法研究[J]. 水利科技与经济, 2011, 17(7): 26-29.

Zheng S Q. SKALAR San++ continuous flow analysis on the measurement of volatile phenol in water[J]. Water Conservancy Science and Technology and Economy, 2011, 17(7): 26-29.

[19]

黄丽芬. SKALAR San++连续流动分析仪测定水中挥发酚[J]. 福建分析测试, 2018, 27(2): 58-62.

Huang L F. SKALAR San++ continuous flow analysis on the measurement of volatile phenol in water[J]. Fujian Analysis & Testing, 2018, 27(2): 58-62.

[20]

顾丽芬. SAN++型连续流动分析仪分析水样中挥发酚的方案优化[J]. 污染防治技术, 2019, 27(2): 42-46.

Gu L F. Optimization scheme for analyzing volatile phenol in water samples by SAN++ continuous flow analyzer[J]. Pollution Control Technology, 2019, 27(2): 42-46.

[21]

王耀, 邹潍力, 黄健生, 等. 连续流动分析法快速测定环境水样中的挥发酚[J]. 分析试验室, 2009, 28(5): 85-87.

Wang Y, Zou W L, Huang J S, et al. Continuous flow analysis on the measurement of volatile phenol in environmental water[J]. Chinese Journal of Analysis Laboratory, 2009, 28(5): 85-87.

[22]

杨锡丹. 论海水中氯化钠浓度对挥发酚的影响[J]. 绿色科技, 2016, 20(14): 40-41.

Yang X D. Effection of NaCl concentration in seawater on the measurement of volatile phenol[J]. Journal of Green Science Technology, 2016, 20(14): 40-41.

[23]

周慧芳, 谭红兵, 高将, 等. 南通地区地下水咸化机理分析及改良措施[J]. 水资源保护, 2015, 31(4): 70-76.

Zhou H F, Tan H B, Gao J, et al. Analysis of salinization mechanism of groundwater in Nantong area and its improvement measures[J]. Water Resources Poretection, 2015, 31(4): 70-76.

[24]

靳莎. 连续流动分析法同时测定饮用水中的挥发酚和阴离子合成洗涤剂[J]. 中国卫生检验杂志, 2017, 27(19): 2769-2770.

Jin S. Simultaneous determination of volatile phenol and anionic synthetic detergent in drinking water by continual flow analysis[J]. Chinese Journal of Health Laboratory Technology, 2017, 27(19): 2769-2770.

[25]

薛慧, 李银贺, 宫博, 等. 连续流动-分光光度法测定地表水中挥发酚和总氰化物[J]. 中国无机分析化学, 2018, 8(5): 9-13.

Xue H, Li Y H, Gong B, et al. Determination of volatile phenols and total cyanide in surface water by continuous flow analysis (CFA) and spectrophotometric method[J]. Chinese Journal of Inorganic Analysis Chemistry, 2018, 8(5): 9-13.

[26]

仓书华, 杨胜琴, 李琰, 等. 连续流动分析法测定矿泉水中挥发酚[J]. 中国卫生检验杂志, 2011, 21(9): 2337, 2339.

Cang S H, Yang S Q, Li Y, et al. Continuous flow analysis on the measurement of volatile phenol in mineral water[J]. Chinese Journal of Health Laboratory Technology, 2011, 21(9): 2337, 2339.

[27]

应忠真, 王姮, 李子孟, 等. 连续注射分析海水中挥发酚[J]. 山东化工, 2018, 47(22): 77, 83.

Ying Z Z, Wang H, Li Z M, et al. Flow injection analysis on the measurement of volatile phenol in sea water[J].Shandong Chemical Industry, 2018, 47(22): 77, 83.

相似文献(共20条)

[1]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

徐文, 周建伟, 刘存富, 甘义群, 刘运德, 张彦鹏. 地下水硝酸盐15N和18O同位素在线测试技术研究. 岩矿测试, 2013, 32(2): 305-312.

[4]

刘丛强, 肖化云. 水样硝酸盐氮同位素分析预处理方法探讨. 岩矿测试, 2002, (2): 105-108.

[5]

田芹, 江林, 王丽平. 流动注射快速分析水体中挥发酚及样品保存的研究. 岩矿测试, 2010, 29(4): 359-362.

[6]

胡平, 王淑惠, 刘印平, 杨立新. 液态乳及乳粉中硝酸盐的污染分析. 岩矿测试, 2013, 32(2): 330-333.

[7]

魏峰, 陈海英, 沈小明, 吕爱娟. 地下水中半挥发性有机污染物痕量分析的5个问题探讨. 岩矿测试, 2012, 31(6): 1043-1049.

[8]

杜钰娉, 张汉萍, 李海萍, 董薇, 刘文华. 地下水中高锰酸盐指数和硝酸根铵根稳定性研究. 岩矿测试, 2014, 33(3): 424-430.

[9]

周炼, 刘存富, 王佩仪. 地下水^32硅年龄的测定方法—液体闪烁计数法. 岩矿测试, 2000, (2): 97-100.

[10]

张琢, 邵超英, 温晓华, 何中发. 地下水中钙和镁的离子色谱法同时测定. 岩矿测试, 2010, 29(5): 621-624.

[11]

宋淑玲, 饶竹. 气相色谱电子捕获法检测地下水中5种残留农药. 岩矿测试, 2011, 30(2): 174-177.

[12]

李海萍, 赵秋香, 何光涛, 莫书伟, 曾宇斌. 地表水和地下水水质分析前处理问题探讨. 岩矿测试, 2010, 29(5): 613-616.

[13]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[14]

王海娇, 王娜, 汪寅夫, 李丽君. 高效液相色谱法分析地下水和饮用水中苯并(a)芘. 岩矿测试, 2010, 29(5): 625-627.

[15]

赵文杰, 马明, 张珂, 李艳香, 侯明兰, 张玉强. 自动电位滴定仪应用于地下水六项指标的连续滴定. 岩矿测试, 2018, 37(5): 580-585. doi: 10.15898/j.cnki.11-2131/td.201711060176

[16]

曹攽, 马军, 李云木子. 荧光-紫外检测器高效液相色谱法检测地下水中16种多环芳烃. 岩矿测试, 2010, 29(5): 539-542.

[17]

李松, 饶竹. 超高效液相色谱法检测地下水中苯并(a)芘. 岩矿测试, 2010, 29(6): 679-682.

[18]

饶竹, 田来生, 郭秀红, 徐建明. 地下水水质检测中质量异议问题的原因分析. 岩矿测试, 2006, 25(2): 177-180.

[19]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[20]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

计量
  • PDF下载量(10)
  • 文章访问量(194)
  • HTML全文浏览量(44)
  • 被引次数(0)
目录

Figures And Tables

应用连续流动分析法测定高盐地下水中的挥发酚

顾华, 单晓锋, 崔君, 张强, 余肖峰, 朱鸽