【引用本文】 董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004
DONG Xue-lin, HE Hai-yang, CHU Qin, et al. Determination of Rare Earth Elements in Barite-associated Rare Earth Ores by Alkaline Precipitation Separation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素

1. 

湖北省地质实验测试中心, 湖北 武汉 430034

2. 

国土资源部稀土稀有稀散矿产重点实验室, 湖北 武汉 430034

3. 

华中科技大学化学与化工学院, 湖北 武汉 430074

收稿日期: 2019-01-09  修回日期: 2019-04-29  接受日期: 2019-07-16

基金项目: 国家重点研发计划项目"重点领域急需化学成分量标准物质研究"(2016YFF020110308)

作者简介: 董学林, 硕士, 工程师, 从事岩矿分析和环境分析工作。E-mail:dongxlin109@126.com

Determination of Rare Earth Elements in Barite-associated Rare Earth Ores by Alkaline Precipitation Separation-Inductively Coupled Plasma-Mass Spectrometry

1. 

Hubei Province Geological Experimental Testing Center, Wuhan 430034, China

2. 

Key Laboratory of Rare Mineral, Ministry of Land and Resources, Wuhan 430034, China

3. 

School of Chemistry Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

Received Date: 2019-01-09
Revised Date: 2019-04-29
Accepted Date: 2019-07-16

摘要:采用电感耦合等离子体质谱法(ICP-MS)测定伴生重晶石轻稀土矿中的稀土元素时,Ba以及轻稀土元素La、Ce、Pr、Nd、Sm等对中重稀土造成严重的质谱重叠干扰,因此在保证矿石完全消解的同时,若能选择合适的前处理方法实现目标元素与基体的有效分离,将有利于减少质谱干扰。本文采用过氧化钠-碳酸钠熔融分解伴生重晶石的稀土矿样品,熔融物用三乙醇胺溶液提取,将沉淀过滤去除硅、铁、锰、铝等大量基体元素,而稀土元素与钡、锶、钙等留存于沉淀中,沉淀经盐酸溶解后再用氨水进行二次沉淀,将稀土元素与伴生的高含量钡、锶、钙等元素分离,分离率超过96%,从而极大地降低了由钡的氧化物和氢氧化物对153Eu等元素质量数的质谱干扰。轻稀土元素对中重稀土元素的干扰则通过测定高浓度的单元素标准溶液在m/z 138~175处的表观浓度来计算干扰校正系数,对干扰量进行扣除校正。该方法通过稀土矿石标准物质GBW07187、GBW07188验证,测定值与认定值的相对误差 < 10%;应用于伴生重晶石稀土矿石实际样品分析,相对标准偏差(RSD,n=12)为0.5%~4.6%,证明了本方法可用于分析高钡矿石中的稀土元素。

关键词: 重晶石, 稀土元素, 过氧化钠-碳酸钠熔融, 沉淀分离, , 电感耦合等离子体质谱法

要点

(1) 准确定量伴生重晶石型稀土矿石中的稀土元素含量。

(2) 碱熔提取后通过氨水二次沉淀稀土实现了与钡等共存元素的有效分离。

(3) 采用干扰校正系数法扣除轻稀土对中重稀土的质谱干扰。

Determination of Rare Earth Elements in Barite-associated Rare Earth Ores by Alkaline Precipitation Separation-Inductively Coupled Plasma-Mass Spectrometry

ABSTRACT

BACKGROUND:

When inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine the rare earth elements (REE) in the barite-associated light rare earth ores, Ba and light rare earth elements La, Ce, Pr, Nd, Sm, cause severe mass spectral overlap interference to the medium and heavy rare earths. Therefore, under the condition that complete digestion of oress, if the appropriate pretreatment method can be selected to achieve effective separation of the target elements from the matrix, it will be beneficial to reduce mass spectrum interferences.

OBJECTIVES:

To reduce the mass spectrum interferences by establishing a simple and effective pretreatment method for separation of rare earth elements from barium and other coexisting elements in barite-associated rare earth ores.

METHODS:

The barite-associated rare earth ores samples were fused with sodium peroxide and sodium carbonate. After dissolution of the fusion cake, the target REE and the undesired barium were precipitated in triethanolamine solution, but some matrix elements like Si, Fe, Mg, and Al in samples, and most fusion agents, were separated by filtration. The target REE were secondly precipitated in ammonium hydroxide after dissolution of the precipitates by acid, so that Ba, Sr and Ca could be separated from REE. The separation exceeds 96%, so the mass spectrum interferences caused by barium polyatomic ions were effectively reduced. In addition, the interference correction coefficients by measuring the interference concentration at m/z 138-175 of the high concentration lighter rare earths standard single element solution were adopted to account for the oxide and hydroxide overlap problem for the determination of middle and heavier rare earth elements.

RESULTS:

The validity of the method was evaluated by analyses of rare earth ores certified reference materials and the results were in good agreement with certified values (|RE| < 10%). For the actual sample analysis of the barite-associated rare earth ores, the relative standard deviations (n=12) were from 0.5% to 4.6%, which proved that the method can be used to analyze rare earth elements in high-Ba ores.

CONCLUSIONS:

The results demonstrate that this method is both practical and effective for rare earth elements analysis in barite-associated rare earth ores.

KEY WORDS: barite, rare earth elements, sodium peroxide-sodium carbonate melting, precipitation separation, barium, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) The content of rare earth elements in barite-associated rare earth ores was accurately determined.

(2) The separation of rare earth elements from barium and other coexistent elements was realized by precipitation of ammonium hydroxide after alkali fusion.

(3) The interference correction coefficient method was used for deducting the mass spectrum interferences of light rare earth elements on medium and heavy rare earth elements.

本文参考文献

[1]

王春梅, 刘玉柱, 赵龙胜, 等. 我国稀土材料与绿色制备技术现状与发展趋势[J]. 中国材料进展, 2018, 37(11): 841-847.

Wang C M, Liu Y Z, Zhao L S, et al. Current situation and development tendency on rare earth materials and its green preparation technologies in China[J]. Materials China, 2018, 37(11): 841-847.

[2]

季根源, 张洪平, 李秋玲, 等. 中国稀土矿产资源现状及其可持续发展对策[J]. 中国矿业, 2018, 27(8): 9-16.

Ji G Y, Zhang H P, Li Q L, et al. Current status of rare earth resources in China and strategies for its sustainable development[J]. China Mining Magazine, 2018, 27(8): 9-16.

[3]

王宝磊, 吴玉锋, 章启军, 等. 草酸盐重量法测定荧光粉废料中稀土氧化物的总量[J]. 稀土, 2016, 37(5): 92-96.

Wang B L, Wu Y F, Zhang Q J, et al. Determination of total rare earth oxides content in waste phosphors with oxalate gravimetric method[J]. Chinese Rare Earths, 2016, 37(5): 92-96.

[4]

张燕辉, 杜若冰, 王振兴, 等. 氯乙酸缓冲体系在稀土测定中的应用研究[J]. 中国稀土学报, 2013, 31(5): 636-640.

Zhang Y H, Du R B, Wang Z X, et al. Research on buffer solution of chloroacetic acid in rare earth detection[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(5): 636-640.

[5]

孙志峰, 张志刚, 张翼明, 等. 镝铁合金中稀土总量的测定——EDTA容量法[J]. 稀土, 2010, 31(1): 77-79. doi: 10.3969/j.issn.1004-0277.2010.01.017

Sun Z F, Zhang Z G, Zhang Y M, et al. Determination of total rare earth content in Dy-Fe alloy with EDTA volume method[J].Chinese Rare Earths, 2010, 31(1): 77-79. doi: 10.3969/j.issn.1004-0277.2010.01.017

[6]

Khorge C R, Patwardhan A A. Separation and determina-tion of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J].Atomic Spectroscopy, 2018, 39(2): 75-80.

[7]

Balarama Krishna M V, Venkateswarlu G, Karunasagar D, et al. Development of simple and robust microwave-assisted decomposition method for the determination of rare earth elements in coal fly ash by ICP-OES[J].Analytical Methods, 2017, 9: 2031-2040. doi: 10.1039/C7AY00286F

[8]

艾军, 陶德刚, 李素芝, 等. ICP-AES直接测定地质样品中微量稀土元素[J]. 武汉化工学院学报, 2001, 23(1): 18-20. doi: 10.3969/j.issn.1674-2869.2001.01.006

Ai J, Tao D G, Li S Z, et al. Direct determination of rare earth elements in geochemical samples by ICP-AES[J].Journal of Wuhan Institute of Technology, 2001, 23(1): 18-20. doi: 10.3969/j.issn.1674-2869.2001.01.006

[9]

胡璇, 刘万超, 石磊, 等. 电感耦合等离子体原子发射光谱法测定赤泥浸出液中稀土元素[J]. 冶金分析, 2015, 35(12): 46-50.

Hu X, Liu W C, Shi L, et al. Determination of rare earth elements in leaching solution of red mud by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(12): 46-50.

[10]

吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1): 12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003

Wu S T, Wang Y P, Sun D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003

[11]

尹明, 符廷发, 袁玄晖, 等. 感耦等离子体质谱法测定地质样品中痕量稀土元素的研究[J]. 岩矿测试, 1989, 8(2): 81-86.

Yin M, Fu T F, Yuan X H, et al. A study of determination of trace REE in geological samples by ICP-MS[J]. Rock and Mineral Analysis, 1989, 8(2): 81-86.

[12]

Vaughan M A, Horlick G. Correction procedures for rare earth element analyses in inductively coupled plasma-mass spectrometry[J].Applied Spectroscopy, 1990, 44(4): 587-593. doi: 10.1366/0003702904087488

[13]

Aggarwal J K, Shabani M B, Palmer M R, et al. Deter-mination of the rare earth elements in aqueous samples at sub-ppt levels by inductively coupled plasma mass spectrometry and flow injection ICPMS[J].Analytical Chemistry, 1996, 68(24): 4418-4423. doi: 10.1021/ac9602074

[14]

胡圣虹, 林守麟, 刘勇胜, 等. 等离子体质谱法测定地质样品中痕量稀土元素的基体效应及多原子离子干扰的校正研究[J]. 高等学校化学学报, 2000, 21(3): 368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

Hu S H, Lin S L, Liu Y S, et al. Studies on the calibration of matrix effects and polyatomic ion for rare earth elements in geological samples by ICP-MS[J].Chemical Jouranl of Chinese Universities, 2000, 21(3): 368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

[15]

王冠, 李华玲, 任静, 等. 高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J]. 岩矿测试, 2013, 32(4): 561-567. doi: 10.3969/j.issn.0254-5357.2013.04.007

Wang G, Li H L, Ren J, et al. Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(4): 561-567. doi: 10.3969/j.issn.0254-5357.2013.04.007

[16]

Naga B K, Deb S B, Saxena M K, et al. Quantification of trace level rare earth elements in Al matrices by ICP-MS[J].Radiochmica Acta, 2019, 107(3): 215-220. doi: 10.1515/ract-2018-3019

[17]

吴磊, 刘义博, 王家松, 等. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6): 637-643.

Wu L, Liu Y B, Wang J S, et al. Sample treatment methods for determination of rare earth elements in manganese ore by high-pressure closed digestion-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 637-643.

[18]

Yan X Y, Dai S F, Graham I T, et al. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS[J].International Journal of Coal Geology, 2018, 191: 152-156. doi: 10.1016/j.coal.2018.03.009

[19]

Wang Y Q, Huang X X, Sun Y L, et al. A new method for the separation of LREEs in geological materials using a single TODGA resin column and its application to the determination of Nd isotope compositions by MC-ICPMS[J].Analytical Methods, 2017, 9(23): 3531-3540. doi: 10.1039/C7AY00966F

[20]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[21]

袁静, 沈加林, 刘建坤, 等. 高能偏振能量色散X射线荧光光谱仪测定地质样品中稀土元素[J]. 光谱学与光谱分析, 2018, 38(2): 582-589.

Yuan J, Shen J L, Liu J K, et al. Determination of rare earth elements in geological samples by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 582-589.

[22]

周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305.

[23]

田春霞, 刘文华, 刘璟, 等. 稀土元素分析[J]. 分析试验室, 2018, 37(2): 222-248.

Tian C X, Liu W H, Liu J, et al. Rare earth elements analysis[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 222-248.

[24]

胡圣虹, 李清澜, 林守麟, 等. 感耦等离子体质谱法直接测定碳酸盐岩中超痕量稀土元素[J]. 岩矿测试, 2000, 19(4): 249-253. doi: 10.3969/j.issn.0254-5357.2000.04.003

Hu S H, Li Q L, Lin S L, et al. Determination of ultra-trace rare earth elements in carbonate by ICP-MS[J]. Rock and Mineral Analysis, 2000, 19(4): 249-253. doi: 10.3969/j.issn.0254-5357.2000.04.003

[25]

Raut N M, Huang L, Lin K, et al. Uncertainty propaga-tion through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2005, 530(1): 91-103. doi: 10.1016/j.aca.2004.08.067

[26]

曹心德, 尹明, 王晓蓉, 等. AG50W-x8树脂分离去除钡的多原子离子对电感耦合等离子体质谱法测定稀土元素的质谱干扰[J]. 分析化学, 2001, 29(8): 890-893. doi: 10.3321/j.issn:0253-3820.2001.08.005

Cao X D, Yin M, Wang X R, et al. Elimination of the spectral interference from barium polyatomic ions on rare earth elements in inductively coupled plasma mass spectrometry by AG50W-x8 cation exchange chromatographic separation[J].Chinese Journal of Analytical Chemistry, 2001, 29(8): 890-893. doi: 10.3321/j.issn:0253-3820.2001.08.005

[27]

李艳玲, 熊采华, 黄慧萍, 等. 基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素[J]. 岩矿测试, 2005, 24(2): 87-92. doi: 10.3969/j.issn.0254-5357.2005.02.002

Li Y L, Xiong C H, Huang H P, et al. Determination of ultra-trace rare earth elements in barite by ICP-MS after matrix separation[J]. Rock and Mineral Analysis, 2005, 24(2): 87-92. doi: 10.3969/j.issn.0254-5357.2005.02.002

[28]

尹明, 李冰. 感耦等离子体质谱法在高纯稀土氧化物分析中基体谱线干扰的研究[J]. 岩矿测试, 1994, 13(2): 81-91.

Yin M, Li B. Matrix-induced polyatomic ion interferences in inductively coupled plasma mass spectrometric analysis of high purity rare earth oxides[J]. Rock and Mineral Analysis, 1994, 13(2): 81-91.

[29]

刘贵磊, 许俊玉, 温宏利, 等. 动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J]. 桂林理工大学学报, 2016, 36(1): 176-183. doi: 10.3969/j.issn.1674-9057.2016.01.024

Liu G L, Xu J Y, Wen H L, et al. Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1): 176-183. doi: 10.3969/j.issn.1674-9057.2016.01.024

[30]

陈从德, 蒲广平. 牦牛坪稀土矿床地质特征及其成因初探[J]. 地质与勘探, 1991, (5): 18-23.

Chen C D, Pu G P. Geological features and genesis of the Maoniuping rare earth element deposit, Sichuan[J].Geology and Exploration, 1991, (5): 18-23.

[31]

《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M] . 北京: 地质出版社, 2011

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis (The Fourth Edition)[M] . Beijing: Geological Publishing House, 2011
[32] Taylor S R,Mcclenan S M. The Continental Crust:Its Composition and Evolution[M] . Oxford: Blackwell, 1985: 312
[33]

Yu Z S, Robinson P, McGoldrick P, et al. An evaluation of me-thods for the chemical decomposition of geological materials for trace element determination using ICP-MS[J]. Geostandards & Geoanalytical Research, 2010, 25(2-3): 199-217.

相似文献(共20条)

[1]

李艳玲, 熊采华, 方金东, 黄慧萍, 陶德刚. 基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素. 岩矿测试, 2005, (2): 87-92.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[4]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[5]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

[6]

张志勇, 陈述, 李子尚, 周海波, 刘晓锋. 改进的碳酸钠-氧化锌半熔-硫酸钡重量法测定重晶石中的硫. 岩矿测试, 2015, 34(5): 575-578. doi: 10.15898/j.cnki.11-2131/td.2015.05.013

[7]

陈利平, 杨德君. 等离子体发射光谱法测定重晶石中钡铁和硅. 岩矿测试, 1998, (4): 317-318.

[8]

仵利萍, 刘卫. 熔融制样-X射线荧光光谱法测定重晶石中主次量元素. 岩矿测试, 2011, 30(2): 217-221.

[9]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[10]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[11]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[12]

吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24.

[13]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[14]

张楠, 徐铁民, 吴良英, 魏双, 方蓬达, 王家松. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

[15]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[16]

高晶晶, 刘季花, 张辉, 白亚之, 崔菁菁, 何连花. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素. 岩矿测试, 2012, 31(3): 425-429.

[17]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[18]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[19]

吴磊, 刘义博, 王家松, 吴良英, 张楠, 王娜. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究. 岩矿测试, 2018, 37(6): 637-643. doi: 10.15898/j.cnki.11-2131/td.201712060189

[20]

周安丽, 武志远, 宁海龙, 王东, 杨丽, 吕新明. 高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素. 岩矿测试, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106

计量
  • PDF下载量(39)
  • 文章访问量(348)
  • HTML全文浏览量(62)
  • 被引次数(0)
目录

Figures And Tables

碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素

董学林, 何海洋, 储溱, 仇秀梅, 唐兴敏