【引用本文】 贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003
HE Ling, SUN Bin-bin, WU Chao, et al. Assessment of Soil Environment Quality and Ecological Risk for Kiwifruit Orchards in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003

浙江省江山市猕猴桃果园土壤环境质量与生态风险评价

1. 

国土资源部地球化学探测技术重点实验室, 中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

2. 

联合国教科文组织全球尺度地球化学国际研究中心, 河北 廊坊 065000

3. 

江山市自然资源和规划局, 浙江 江山 324100

4. 

江山市林业局, 浙江 江山 324100

收稿日期: 2019-01-08  修回日期: 2019-05-28  接受日期: 2019-07-16

基金项目: 中国地质调查局地质调查项目(DD20160320-02)

作者简介: 贺灵, 硕士, 高级工程师, 主要从事生态地球化学调查与评价方面的工作。E-mail:heling@igge.cn

Assessment of Soil Environment Quality and Ecological Risk for Kiwifruit Orchards in Jiangshan City, Zhejiang Province

1. 

Key Laboratory of Geochemical Exploration, Ministry of Land and Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. 

UNESCO International Center on Global-Scale Geochemistry, Langfang 065000, China

3. 

Jiangshan Natural Resources and Planning Bureau, Jiangshan 324100, China

4. 

Jiangshan Forestry Bureau, Jiangshan 324100, China

Received Date: 2019-01-08
Revised Date: 2019-05-28
Accepted Date: 2019-07-16

摘要:果园土壤环境与果品产量和质量及食用安全性关系密切。已有研究表明目前我国猕猴桃果园土壤中普遍存在养分含量不足、分布不均的问题,个别地区发现有重金属含量超标的现象。浙江省近年来猕猴桃种植面积连年扩大,已是我国重要的猕猴桃产区之一。为查明该省江山市猕猴桃果园土壤环境质量现状,本文选择了两处典型猕猴桃果园采集土壤、岩石、果实样品,采用原子荧光光谱、电感耦合等离子体发射光谱等技术测定土壤和岩石样品中的重金属、养分元素、土壤理化指标和果实样品中的重金属含量。以果园土壤中养分元素丰缺与影响因素、重金属元素含量与果实食用安全性为主要研究内容,开展了猕猴桃果园土壤环境质量与生态风险评价。结果表明:①两处果园土壤中Ag、Bi、Co、Cr、Ni、Sb、Se、V、SiO2等含量低于衢州市和浙江省土壤背景值,Pb、Al2O3等高于衢州市和浙江省土壤背景值,土壤中元素含量受自然地质背景控制的特征明显;②土壤pH值范围为4.61~6.30,按DZ/T 0295-2016《土地质量地球化学评价规范》中土壤酸碱度分级标准,属于强酸性和酸性土壤;③养分元素K、Ge、Mo、Zn较丰富,但N、P、Mn、S较缺乏;④土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn含量最大值分别为21.84、0.22、23.53、20.47、0.06、8.82、53.84、133mg/kg,远低于农用地土壤污染风险筛选值(pH ≤ 5.5时标准限值分别为40、0.3、150、150、1.3、60、70、200mg/kg),土壤污染风险低;⑤猕猴桃果实中的重金属含量低于绿色食品限值和食品卫生标准限值,如As含量最高为0.009mg/kg,其限值分别为0.2mg/kg和0.5mg/kg。整体上,研究区土壤具有养分分布不均匀、重金属含量低、酸性强的特点,建议采取科学措施补充和平衡土壤养分,防范土壤酸化导致的重金属活化风险。

关键词: 猕猴桃, 果园土壤, 环境质量, 重金属, 生态风险评价, 原子荧光光谱法, 电感耦合等离子体发射光谱法

要点

(1) 查明了果园土壤中养分和重金属元素的含量数据,分析了其影响因素。

(2) 用土地质量地球化学调查的方法研究了果园土壤环境质量和生态风险。

(3) 研究区果园土壤养分含量不均匀,酸性强、重金属含量低,暂无生态风险。

Assessment of Soil Environment Quality and Ecological Risk for Kiwifruit Orchards in Jiangshan City, Zhejiang Province

ABSTRACT

BACKGROUND:

The orchard soil environment is closely related to kiwifruit yield, quality and its edible safety. Research shows that the nutrient insufficiency and uneven distribution in kiwifruit orchard soil is a common problem in China, and in some areas, the content of heavy metals in soil has been found to exceed the environmental quality standard for soils. In recent years, the planting area of Kiwifruit in Zhejiang Province has been expanded year by year, being one of the important kiwifruit producing areas in China.

OBJECTIVES:

To study the present situation of soil environmental quality in kiwifruit orchards in Jiangshan City, Zhejiang Province.

METHODS:

Two typical kiwifruit orchards were selected to collect samples of soil, rock and fruit, and the content of heavy metals, nutrients and physical and chemical parameters of soil and rock samples were determined by atomic fluorescence spectrometry (AFS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). The environmental quality and ecological risk assessment of orchard soil were carried out with the main research contents of nutrient abundance and deficiency in orchard soil, influence factors, heavy metal content and fruit edible safety.

RESULTS:

The results showed that the content of Ag, Bi, Co, Cr, Ni, Sb, Se, V and SiO2 in the soil of the two orchards were lower than those of Quzhou City and Zhejiang Province, while Pb and Al2O3 contents were higher than those of Quzhou City and Zhejiang Province. The characteristics of soil element content were obviously controlled by the natural geological background. Soil pH value ranged from 4.61 to 6.30. According to the classification standard in DZ/T 0295-2016, the soils in the studied area belonged to strong acidic and acidic soils. Nutrient elements K, Ge, Mo and Zn were abundant, but N, P, Mn and S were deficient. The maximum value of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in the soil samples were 21.84, 0.22, 23.53, 20.47, 0.06, 8.82, 53.84 and 133mg/kg, respectively, which were far lower than the screening value of soil pollution risk for agricultural land (standard limit were 40, 0.3, 150, 150, 1.3, 60, 70, 200mg/kg when pH ≤ 5.5). The risk of soil pollution was low. The contents of heavy metals in kiwifruit fruit were lower than the limits of green food and food hygiene standards. For example, the highest content of As was 0.009mg/kg, the limit were 0.2mg/kg and 0.5mg/kg, respectively.

CONCLUSIONS:

On the whole, the soils in the study area have the characteristics of strong acidity, uneven distribution of nutrients and low content of heavy metals. It is necessary to take scientific measures to supple and balance soil nutrients and prevent the risk of heavy metals activation caused by soil acidification.

KEY WORDS: kiwifruit, orchard soil, environment quality, heavy metals, ecological risk assessment, atomic fluorescence spectrometry, inductively coupled plasma-optical emission spectrometry

HIGHLIGHTS

(1) The contents of nutrients and heavy metals in orchard soil were investigated and the influencing factors were analyzed.

(2) Soil environment quality and ecological risk in orchards were studied by the methods of land quality geochemical surveys.

(3) The soil in the study area had the characteristics of strong acidity, uneven distribution of nutrients and low content of heavy metals, and showed no ecological risk at present.

本文参考文献

[1]

Carey P L, Benge J R, Haynes R J, et al. Comparison of soil quality and nutrient budgets between organic and conventional kiwifruit orchards[J].Agriculture, Ecosystems and Environment, 2009, 132: 7-15. doi: 10.1016/j.agee.2009.02.017

[2]

Briones M J I, Barreal M E, Harrison A C, et al. Earthworms and nitrogen applications to improve soil health in an intensively cultivated kiwifruit orchard[J].Applied Soil Ecology, 2011, 49: 158-166. doi: 10.1016/j.apsoil.2011.06.002

[3]

Todd J H, Poulton J, Richards K, et al. Effect of orchard management, neighbouring land-use and shelterbelt tree composition on the parasitism of pest leafroller (Lepidoptera:Tortricidae) larvae in kiwifruit orchard shelterbelts[J].Agriculture, Ecosystems and Environment, 2018, 260: 27-35. doi: 10.1016/j.agee.2018.03.016

[4]

Todd J H, Malone L A, McArdle B H, et al. Invertebrate community richness in New Zealand kiwifruit orchards under organic or integrated pest management[J].Agriculture, Ecosystems and Environment, 2011, 141: 32-38. doi: 10.1016/j.agee.2011.02.007

[5]

Wardle D A, Yeates G W, Bonner K I, et al. Impacts of ground vegetation management strategies in a kiwifruit orchard on the composition and functioning of the soil biota[J]. Soil Biology & Biochemistry, 2001, 33: 893-905.

[6]

雷宝佳, 杨联安, 张林森, 等. 猕猴桃果园土壤养分空间变异性分析——以陕西周至县为例[J]. 西北大学学报(自然科学版), 2015, 45(2): 323-326.

Lei B J, Yang L A, Zhang L S, et al. Analysis on spatial variability of soil nutrition of kiwifruit orchards:Taking Zhouzhi County of Shannxi Province as a case[J]. Journal of Northwest University (Natural Science Edition), 2015, 45(2): 323-326.

[7]

李晓彤, 岳田利, 胡仲秋, 等. 陕西省猕猴桃园土壤重金属含量及污染风险评价[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2): 173-178.

Li X T, Yue T L, Hu Z Q, et al. Concentrations of soil heavy metals in kiwifruit orchards in Shaanxi and risk evaluation[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(2): 173-178.

[8]

康婷婷, 张晓佳, 陈竹君, 等. 秦岭北麓猕猴桃园土壤养分状况研究——以周至县余家河小流域为例[J]. 西北农林科技大学学报(自然科学版), 2015, 43(11): 159-164.

Kang T T, Zhang X J, Chen Z J, et al. Soil nutrients status of kiwifruit orchards in the northern foothills of Qinling Mountains-A case study in Yujia River catchment of Zhouzhi County[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(11): 159-164.

[9]

潘俊峰, 曾华, 李志国, 等. 都江堰猕猴桃主产区果园土壤肥力状况调查与评价[J]. 中国农学通报, 2014, 30(10): 269-275. doi: 10.11924/j.issn.1000-6850.2013-2367

Pan J F, Zeng H, Li Z G, et al. An investigation and assessment on the soil fertility status of kiwifruit orchards in Dujiangyan[J].Chinese Agricultural Science Bulletin, 2014, 30(10): 269-275. doi: 10.11924/j.issn.1000-6850.2013-2367

[10]

张承, 周开拓, 龙友华, 等. 贵州省修文县猕猴桃果园土壤养分分析[J]. 湖北农业科学, 2013, 52(17): 4083-4086. doi: 10.3969/j.issn.0439-8114.2013.17.015

Zhang C, Zhou K T, Long Y H, et al. Analysis on soil nutrient availability of kiwifruit orchards in Xiuwen County of Guizhou Province[J].Hubei Agricultural Sciences, 2013, 52(17): 4083-4086. doi: 10.3969/j.issn.0439-8114.2013.17.015

[11]

刘晗, 何腾兵, 党华美, 等. 贵州修文土壤-猕猴桃系统重金属富集特征[J]. 山地农业生物学报, 2017, 36(2): 53-56.

Liu H, He T B, Dang H M, et al. Characteristics of accumulation of heavy metals in soil-kiwi system in Guizhou[J]. Journal of Mountain Agriculture and Biology, 2017, 36(2): 53-56.

[12]

卜范文, 汤佳乐, 杨玉, 等. 湖南省猕猴桃果园土壤镉含量及镉吸收规律研究[J]. 江西农业大学学报, 2017, 39(3): 468-475.

Bu F W, Tang J L, Yang Y, et al. A study of soil cadmium content and its absorption law in kiwifruit orchards in Hunan Province[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(3): 468-475.

[13]

王仁才, 石浩, 庞立, 等. 湘西猕猴桃种植基地土壤和猕猴桃中重金属积累状况研究[J]. 农业资源与环境学报, 2017, 34(3): 280-285.

Wang R C, Shi H, Pang L, et al. Accumulation of heavy metals in soil and kiwifruit of planting base in Western Hunan Province, China[J]. Journal of Agricultural Resources and Environmen, 2017, 34(3): 280-285.

[14]

杨玉, 童雄才, 王仁才, 等. 湖南猕猴桃园土壤重金属含量分析及污染评价[J]. 农业现代化研究, 2017, 38(6): 1097-1105.

Yang Y, Tong X C, Wang R C, et al. Analysis and safety evaluation of heavy metal contamination in kiwifruit orchard soils in Hunan Province[J]. Research of Agricultural Modernization, 2017, 38(6): 1097-1105.

[15]

张计育, 莫正海, 黄胜男, 等. 21世纪以来世界猕猴桃产业发展以及中国猕猴桃贸易与国际竞争力分析[J]. 中国农学通报, 2014, 30(23): 48-55. doi: 10.11924/j.issn.1000-6850.2013-2887

Zhang J Y, Mo Z H, Huang S N, et al. Development of kiwifruit industry in the world and analysis of trade and international competitiveness in China entering 21st century[J].Chinese Agricultural Science Bulletin, 2014, 30(23): 48-55. doi: 10.11924/j.issn.1000-6850.2013-2887

[16]

胡凡, 石磊, 李茹, 等. 陕西关中地区猕猴桃施肥现状评价[J]. 中国土壤与肥料, 2017, (3): 44-49.

Hu F, Shi L, Li R, et al. Fertilization evaluation of kiwifruit in Guanzhong region of Shaanxi Province[J]. Soil and Fertilizer Sciences in China, 2017, (3): 44-49.

[17]

罗时健. 江山猕猴桃产业发展现状与对策[J]. 江西农业学报, 2006, 18(4): 212-214. doi: 10.3969/j.issn.1001-8581.2006.04.084

Luo S J. Development status and countermeasures of kiwifruit industry in Jiangshan[J].Acta Agriculturae Jiangxi, 2006, 18(4): 212-214. doi: 10.3969/j.issn.1001-8581.2006.04.084

[18]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[19]

Yuksel B, Arica E. Assessment of toxic, essential, and other metal levels by ICP-MS in Lake Eymir and Mogan in Ankara, Turkey:An environmental application[J].Atomic Spectroscopy, 2018, 39(5): 179-184.

[20]

赵其国. 红壤物质循环及其调控[M] . 北京: 科学出版社, 2002

Zhao Q G. Red Soil Material Cycle and Its Regulation[M] . Beijing: Science Press, 2002
[21]

顾万帆, 胡敏骏, 许杰, 等. 杭州市富阳区猕猴桃种植区域的土壤环境适宜性评价[J]. 浙江农业科学, 2018, 59(2): 178-180.

Gu W F, Hu M J, Xu J, et al. Evaluation of soil environmental suitability of kiwifruit planting area in Fuyang District of Hangzhou City[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(2): 178-180.

[22]

汪庆华, 董岩翔, 郑文, 等. 浙江土壤地球化学基准值与环境背景值[J]. 地质通报, 2007, 26(5): 590-597. doi: 10.3969/j.issn.1671-2552.2007.05.012

Wang Q H, Dong Y X, Zheng W, et al. Soil geochemical baseline values and environmental background values in Zhejiang, China[J].Geological Bulletin of China, 2007, 26(5): 590-597. doi: 10.3969/j.issn.1671-2552.2007.05.012

[23]

林清火, 罗微, 林钊沐, 等. 砖红壤地区旱地土壤肥料养分淋失研究进展[J]. 热带农业科学, 2003, 23(1): 61-66. doi: 10.3969/j.issn.1009-2196.2003.01.012

Lin Q H, Luo W, Lin Z M, et al. Research advances on leaching of fertilizer nutrients in the latisol areas[J].Chinese Journal of Tropical Agriculture, 2003, 23(1): 61-66. doi: 10.3969/j.issn.1009-2196.2003.01.012

[24]

陆若辉, 陈思力, 沈月, 等. 降低浙江农田化肥施肥强度对策分析[J]. 浙江农业科学, 2017, 58(8): 1293-1295.

Lu R H, Chen S L, Shen Y, et al. Countermeasure analysis of reducing fertilization intensity of fertilizer in Zhejiang farmland[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(8): 1293-1295.

[25]

彭勃, 王新平, 孟庆青, 等. 猕猴桃需肥特性及施肥技术[J]. 中国农技推广, 2008, 24(12): 30-31. doi: 10.3969/j.issn.1002-381X.2008.12.017

Peng B, Wang X P, Meng Q Q, et al. Kiwifruit fertilizer characteristics and fertilization techniques[J].China Agricultural Technology Extension, 2008, 24(12): 30-31. doi: 10.3969/j.issn.1002-381X.2008.12.017

[26]

柳检, 罗立强. As、Cd和Pb植物根系吸收途径和影响因素研究现状与进展[J]. 岩矿测试, 2015, 34(3): 269-277.

Liu J, Luo L Q. Research progress on the root uptake pathway of As, Cd and Pb and its influence factors[J]. Rock and Mineral Analysis, 2015, 34(3): 269-277.

[27]

廖启林, 金洋, 吴新民, 等. 南京地区土壤元素的人为活动环境富集系数研究[J]. 中国地质, 2005, 32(1): 141-147. doi: 10.3969/j.issn.1000-3657.2005.01.019

Liao Q L, Jin Y, Wu X M, et al. Artificial environmental concentration coefficients of elements in soils in the Nanjing area[J].Geology in China, 2005, 32(1): 141-147. doi: 10.3969/j.issn.1000-3657.2005.01.019

[28]

赵庆令, 李清彩, 谢江坤, 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015, 34(1): 129-137.

Zhao Q L, Li Q C, Xie J K, et al. Characteristics of soil heavy metal pollution and its ecological risk assessment in South Jining District using methods of enrichment factor and index of eoaccumulation[J]. Rock and Mineral Analysis, 2015, 34(1): 129-137.

[29]

王腾云, 周国华, 孙彬彬, 等. 福建沿海地区土壤-稻谷重金属含量关系与影响因素研究[J]. 岩矿测试, 2016, 35(3): 295-301.

Wang T Y, Zhou G H, Sun B B, et al. The relationship between heavy metal contents of soils and rice in coastal areas, Fujian Province, including influencing factors[J]. Rock and Mineral Analysis, 2016, 35(3): 295-301.

[30]

周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.

Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106.

[31]

张忠启, 茆彭, 于东升, 等. 近25年来典型红壤区土壤pH变化特征——以江西省余江县为例[J]. 土壤学报, 2018, 55(6): 1545-1553.

Zhang Z Q, Mao P, Yu D S, et al. Characteristics of soil pH variation in typical red soil region of South China in the past 25 years-A case study of Yujiang County, Jiangxi Province[J]. Acta Pedologica Sinica, 2018, 55(6): 1545-1553.

[32]

汪吉东, 许仙菊, 宁运旺, 等. 土壤加速酸化的主要农业驱动因素研究进展[J]. 土壤, 2015, 47(4): 627-633.

Wang J D, Xu X J, Ning Y W, et al. Progresses in agricultural driving factors on accelerated acidification of soils[J]. Soils, 2015, 47(4): 627-633.

相似文献(共18条)

[1]

刘明华, 杨晓波, 佟成冶, 马力, 乌爱军. 辽宁省浑河流域底质中重金属元素地球化学特征. 岩矿测试, 2008, 27(3): 184-188.

[2]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[3]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[4]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[5]

赵庆令, 李清彩, 谢江坤, 李元仲, 姬永红, 庞成宝, 万淼. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价. 岩矿测试, 2015, 34(1): 129-137. doi: 10.15898/j.cnki.11-2131/td.2015.01.017

[6]

衷存堤, 尹国胜, 马逸麟, 谢明明, 陈金华. 江西省奉新县猕猴桃立地环境评价. 岩矿测试, 2007, 26(4): 317-319.

[7]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[8]

王图锦, 潘瑾, 刘雪莲. 三峡库区澎溪河消落带土壤中重金属形态分布与迁移特征研究. 岩矿测试, 2016, 35(4): 425-432. doi: 10.15898/j.cnki.11-2131/td.2016.04.015

[9]

翟磊, 詹秀春, 樊兴涛, 温宏利, 焦距, 刘雷雷. 应用S930树脂富集薄样-X射线荧光光谱现场分析环境水体中8种重金属的方法研究. 岩矿测试, 2015, 34(1): 118-128. doi: 10.15898/j.cnki.11-2131/td.2015.01.016

[10]

代杰瑞, 庞绪贵, 刘华峰, 喻超, 曾宪东. 山东省东部地区农业生态地球化学调查及生态问题浅析. 岩矿测试, 2012, 31(1): 189-197.

[11]

田志仁, 封雪, 姜晓旭, 李宗超, 李妤, 夏新. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价. 岩矿测试, 2019, 38(5): 479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

[12]

潘金华, 朱鸽, 曹静, 陆琴, 姜荣光, 梅祖明. 上海外环线沿线及其周围土壤和地下水环境质量监测. 岩矿测试, 2006, 25(2): 173-176.

[13]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[14]

王喆, 谭科艳, 陈燕芳, 刘斯文, 朱晓华, 刘久臣, 汤奇峰, 袁欣. 南方某工业区大气总悬浮颗粒物重金属来源解析及其对土壤环境质量的影响. 岩矿测试, 2016, 35(1): 82-89. doi: 10.15898/j.cnki.11-2131/td.2016.01.014

[15]

顾涛, 赵信文, 胡雪原, 喻望, 曾敏, 王节涛. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价. 岩矿测试, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190

[16]

余广学, 张金震, 王烨, 丁莉, 付志辉. 郑州市土壤重金属污染状况和质量评价. 岩矿测试, 2015, 34(3): 340-345. doi: 10.15898/j.cnki.11-2131/td.2015.03.014

[17]

胡德新, 武素茹, 刘跃勇, 王虹, 王向东, 李权斌, 谷松海. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态. 岩矿测试, 2014, 33(3): 374-378.

[18]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

计量
  • PDF下载量(7)
  • 文章访问量(198)
  • HTML全文浏览量(23)
  • 被引次数(0)
目录

Figures And Tables

浙江省江山市猕猴桃果园土壤环境质量与生态风险评价

贺灵, 孙彬彬, 吴超, 成晓梦, 吴正丰, 周荣强, 候树军