【引用本文】 秦晓丽, 田贵, 李朝长, 等. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾[J]. 岩矿测试, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142
QIN Xiao-li, TIAN Gui, LI Chao-chang, et al. Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142

电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾

安徽省核工业勘查技术总院, 安徽 芜湖 241000

收稿日期: 2018-12-29  修回日期: 2019-04-12  接受日期: 2019-07-16

作者简介: 秦晓丽, 硕士, 工程师, 从事岩矿分析测试工作。E-mail:rockqinxiaoli@163.com

Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry

Anhui Nuclear Exploration Technology Central Institute, Wuhu 241000, China

Received Date: 2018-12-29
Revised Date: 2019-04-12
Accepted Date: 2019-07-16

摘要:同时测定地质样品中的钍和钾,可为放射性矿产资源勘探、天然放射性生态环境评价提供重要依据。对于钍,传统方法使用碱熔法分解试样分光光度法测定,此方法前处理冗长、复杂且不利于多元素的同时测定。而氧化钾一般采用酸溶法消解样品火焰原子吸收分光光度法测定,此方法测定浓度高的溶液需要稀释,检测效率较低。钍和氧化钾的分析涉及了两种配套方法。本文根据地质样品的化学成分特征,筛选出了用硝酸、氢氟酸和高氯酸为溶剂溶解样品,硝酸提取定容后,用电感耦合等离子体发射光谱法(ICP-OES)分别在波长401.913nm和766.490nm处,采用径向观测方式同时测定了钍、氧化钾的含量。钍、氧化钾的标准曲线相关系数均大于0.999,方法检出限分别为0.69μg/g、0.008%,标准物质的测定值与认定值基本一致,二者的对数误差绝对值小于0.1,相对标准偏差(RSD,n=6)小于6.0%,加标回收率在96.0%~104.0%之间,符合《地质矿产实验室测试质量管理规范》的要求。

关键词: 地质样品, , 氧化钾, 酸溶, 电感耦合等离子体发射光谱法, 径向观测

要点

(1) 地质样品中钍和钾传统分析方法的局限性在于两元素单独测定、检测效率低。

(2) 硝酸-氢氟酸-高氯酸溶样为多元素的同时测定提供了条件。

(3) 利用ICP-OES径向观测方式实现了地质样品中钍和氧化钾的同时测定。

Determination of Thorium and Potassium Oxide in Geological Samples by Inductively Coupled Plasma-Optical Emission Spectrometry

ABSTRACT

BACKGROUND:

Simultaneous determination of thorium and potassium in geological samples can provide an important basis for exploration of radioactive mineral resources and evaluation of the natural radioactive ecological environment. The thorium in geological samples is usually digested by alkali fusion in traditional methods and determined by spectrophotometry. The traditional method is long, complex and not suitable for simultaneous determination of multiple elements. The potassium oxide in geological samples is digested by acid and generally determined by flame atomic absorption spectrometry, which requires diluting the solution with high concentration and has low detection efficiency. The determination of thorium and potassium oxide involves two different analytical methods and analytical instruments.

OBJECTIVES:

To establish an analytical method for simultaneous determination of thorium and potassium oxide in geological samples.

METHODS:

Chemical solvent which consists of nitric acid, hydrofluoric acid and perchloric acid, was identified according to the characteristics of the chemical composition of the geological samples. The geological samples were dissolved with this solvent and extracted with nitric acid. The content of thorium and potassium oxide in geological samples was measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) at wavelengths of 401.913nm and 766.490nm, respectively by radial observation mode.

RESULTS:

The correlation coefficient of the calibration curve of thorium and potassium oxide was greater than 0.999 and the detection limit of this method was 0.69μg/g and 0.008%, respectively. The measured value of the standard substance was consistent with the identified value, and the absolute logarithmic error of the two values was less than 0.1. The relative standard deviation was less than 6.0% and the recovery ranged from 96.0% to 104.0%.

CONCLUSIONS:

This method meets the requirements of the testing quality management standard for geological and mineral laboratories.

KEY WORDS: geological samples, thorium, potassium oxide, acid dissolution, inductively coupled plasma-optical emission spectrometry, radial observation

HIGHLIGHTS

(1) The limitation of traditional analytical methods for thorium and potassium in geological samples was the low efficiency resulting from independent measurement for the two elements.

(2) The sample was dissolved by nitric acid-hydrofluoric acid-perchloric acid, which provided the condition for the simultaneous determination of multiple elements.

(3) The thorium and potassium oxide in geological samples were simultaneously determined by ICP-OES with radial observation mode.

本文参考文献

[1]

郭志英, 梁月琴, 崔晓磊, 等. 电感耦合等离子体质谱法测定土壤钍含量以及记忆效应的研究[J]. 中国辐射卫生, 2013, 22(1): 1-7.

Guo Z Y, Liang Y Q, Cui X L, et al. Determination of thorium in soil by inductively coupled plasma mass spectrometry and study of thorium memory effect in analysis[J]. Chinese Journal of Radiological Health, 2013, 22(1): 1-7.

[2]

潘自强. 电离辐射环境监测与评价[M] . 北京: 原子能出版社, 2007: 389

Pan Z Q. Monitoring and Evaluation of Ionizing Radiation Environment[M] . Beijing: Atomic Energy Press, 2007: 389
[3]

程业勋,王南萍,侯胜利. 核辐射场与放射性勘查[M] . 北京: 地质出版社, 2005: 43-44.

Cheng Y X,Wang N P,Hou S L. Nuclear Geophysical Survey[M] . Beijing: Geological Publishing House, 2005: 43-44.
[4]

刘立坤, 郭冬发, 黄秋红, 等. 岩石矿物中铀钍的分析方法进展[J]. 中国无机分析化学, 2012, 2(2): 6-9. doi: 10.3969/j.issn.2095-1035.2012.02.0002

Liu L K, Guo D F, Huang Q H, et al. Progress in analytical methods for determination of uranium and thorium in rocks and minerals[J].Chinese Journal of Inorganic Analytical Chemistry, 2012, 2(2): 6-9. doi: 10.3969/j.issn.2095-1035.2012.02.0002

[5]

王敬, 王火焰. 不同仪器测钾性能及优缺点比较研究[J]. 土壤学报, 2013, 50(2): 340-348.

Wang J, Wang H Y. Comparison between different instruments in potassium determination performance[J]. Acta Pedologica Sinica, 2013, 50(2): 340-348.

[6]

李琳俐, 刘资文, 罗孟杰, 等. 电感耦合等离子体原子发射光谱法测定钾长石矿中的多种元素[J]. 理化检验(化学分册), 2015, 51(7): 917-920.

Li L L, Liu Z W, Luo M J, et al. Determination of elements in potash feldspar ores by ICP-AES[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7): 917-920.

[7]

李志伟, 赵晓亮, 李珍, 等. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 594-600.

Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantalun and associated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 594-600.

[8]

杨华, 张永刚. 电感耦合等离子体原子发射光谱仪(ICP-OES)测定水系沉积物中6种重金属元素[J]. 中国无机分析化学, 2014, 4(1): 22-24. doi: 10.3969/j.issn.2095-1035.2014.01.006

Yang H, Zhang Y G. Determination of six heavy metal elements in stream sediment by ICP-OES together with automated sample digestion system[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 22-24. doi: 10.3969/j.issn.2095-1035.2014.01.006

[9]

孙晓慧, 李章, 刘希良, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J]. 冶金分析, 2014, 34(11): 56-60.

Sun X H, Li Z, Liu X L, et al. Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2014, 34(11): 56-60.

[10]

刘峰, 秦樊鑫, 胡继伟, 等. 不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J]. 理化检验(化学分册), 2011, 47(8): 951-954.

Liu F, Qin F X, Hu J W, et al. Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8): 951-954.

[11]

姜云军, 李星, 姜海伦, 等. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158.

Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158.

[12]

余海军, 张莉莉, 屈志朋, 等. 微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J]. 中国无机分析化学, 2019, 9(1): 34-38. doi: 10.3969/j.issn.2095-1035.2019.01.008

Yu H J, Zhang L L, Qu Z P, et al. Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 34-38. doi: 10.3969/j.issn.2095-1035.2019.01.008

[13]

王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁[J]. 岩矿测试, 2012, 31(3): 442-445. doi: 10.3969/j.issn.0254-5357.2012.03.011

Wang X Q. Simultaneous quantification of K, Na, Ca, Mg, Al, Ti and Fe in feldspar samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2012, 31(3): 442-445. doi: 10.3969/j.issn.0254-5357.2012.03.011

[14]

倪文山. 氢氧化镁共沉淀-电感耦合等离子体原子发射光谱法测定矿石样品中钍[J]. 冶金分析, 2013, 33(1): 13-16. doi: 10.3969/j.issn.1000-7571.2013.01.003

Ni W S. Determination of thorium in mineral samples by inductively coupled plasma atomic emission spectrometry after preconcentration through coprecipitation of magnesium hydroxide[J].Metallurgical Analysis, 2013, 33(1): 13-16. doi: 10.3969/j.issn.1000-7571.2013.01.003

[15]

汪君, 王頔, 邓长生, 等. 电感耦合等离子体发射光谱法测定地球化学样品中的钍[J]. 岩矿测试, 2014, 33(4): 501-505. doi: 10.3969/j.issn.0254-5357.2014.04.008

Wang J, Wang D, Deng C S, et al. Determination of thorium in geochemical sample by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505. doi: 10.3969/j.issn.0254-5357.2014.04.008

[16]

霍红英. 微波消解-电感耦合等离子体原子发射光谱法测定钒钛精矿中钾和钠[J]. 冶金分析, 2017, 37(6): 75-79.

Huo H Y. Determination of potassiuman sodium in vanadium-titanium-iron concentrate by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 75-79.

[17]

卜道露, 杨旭, 李高湖, 等. ICP-MS测定地球化学样品中钍铀等14种元素[J]. 化学研究与应用, 2017, 29(8): 1254-1257. doi: 10.3969/j.issn.1004-1656.2017.08.028

Bu D L, Yang X, Li G H, et al. Determination of 14 elements including thorium, uranium in geochemical samples by inductively coupled plasma-mass spectrometry[J].Chemical Research and Application, 2017, 29(8): 1254-1257. doi: 10.3969/j.issn.1004-1656.2017.08.028

相似文献(共19条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217.

[4]

汪君, 王頔, 邓长生, 张建梅, 羊鸫, 王斌堂, 朱素霞. 电感耦合等离子体发射光谱法测定地球化学样品中的钍. 岩矿测试, 2014, 33(4): 501-505.

[5]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[6]

文加波, 商丹, 宋婉虹, 彭国萍. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较. 岩矿测试, 2011, 30(4): 481-485.

[7]

刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896.

[8]

魏轶, 窦向丽, 巨力佩, 张旺强, 赵伟华, 余志峰, 毛振才. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑. 岩矿测试, 2013, 32(5): 715-718.

[9]

马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247.

[10]

盛献臻, 张汉萍, 李展强, 李海萍, 何光涛. 电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼. 岩矿测试, 2010, 29(4): 383-386.

[11]

何海洋, 董学林, 于晓琪, 任小荣, 曾慧美. 内标校正-电感耦合等离子体发射光谱法测定磷矿石中的磷. 岩矿测试, 2017, 36(2): 117-123. doi: 10.15898/j.cnki.11-2131/td.2017.02.004

[12]

吴峥, 张飞鸽, 张艳. 电感耦合等离子体发射光谱法测定石煤中的13种元素. 岩矿测试, 2013, 32(6): 978-981.

[13]

吴石头, 王亚平, 孙德忠, 温宏利, 许春雪, 王伟. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素————四种前处理方法的比较. 岩矿测试, 2014, 33(1): 12-19.

[14]

王祝, 邵蓓, 柳诚, 冯源强, 刘高令, 邬国栋, 李明礼. 电感耦合等离子体发射光谱法测定西藏矽卡岩型铜多金属富矿石中8种成矿元素. 岩矿测试, 2018, 37(2): 146-151. doi: 10.15898/j.cnki.11-2131/td.201712010188

[15]

赵庆令, 李清彩, 蒲军, 武殿喜. 电感耦合等离子体发射光谱法同时测定土壤样品中 砷硼铈碘铌硫钪锶钍锆等31种元素. 岩矿测试, 2010, 29(4): 455-457.

[16]

张兆祥, 蔡金芳. 分光光度法同时测定岩矿中铀和钍. 岩矿测试, 1990, (3): 243-244.

[17]

宋金如, 梁雨果. 几种不对称变色酸双偶氮胂类显色剂与钍的显色反应. 岩矿测试, 1990, (2): 134-138.

[18]

魏灵巧, 付胜波, 罗磊, 黄小华, 龙安应, 帅琴. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌. 岩矿测试, 2012, 31(6): 967-970.

[19]

李志伟, 赵晓亮, 李珍, 王烨, 王君玉. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素. 岩矿测试, 2017, 36(6): 594-600. doi: 10.15898/j.cnki.11-2131/td.201701030001

计量
  • PDF下载量(23)
  • 文章访问量(166)
  • HTML全文浏览量(24)
  • 被引次数(0)
目录

Figures And Tables

电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾

秦晓丽, 田贵, 李朝长, 蒋智林