【引用本文】 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131
XU Jin-li, XIING Xia, TANG Rui-ling, et al. Determination of 14 Trace Elements in Geochemical Samples by ICP-MS Using Kinetic Energy Discrimination Mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131

动能歧视模式ICP-MS测定地球化学样品中14种痕量元素

1. 

中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

2. 

联合国教科文组织全球尺度地球化学国际研究中心, 河北 廊坊 065000

收稿日期: 2018-12-07  修回日期: 2019-03-17  接受日期: 2019-04-09

基金项目: 中央级公益性科研院所基本科研业务费专项资金(AS2015J12);中国地质调查局地质调查项目专项资金(DD20190518)

作者简介: 徐进力, 硕士, 高级工程师, 主要从事地球化学样品配套分析方法的研究。E-mail:80368070@qq.com

通信作者: 白金峰, 硕士, 教授级高级工程师, 主要从事地球化学样品配套分析方法的研究。E-mail:jinfengbai@sina.com.cn

Determination of 14 Trace Elements in Geochemical Samples by ICP-MS Using Kinetic Energy Discrimination Mode

1. 

Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. 

International Centre on Global-Scale Geochemistry, United Nations Educational-Scientific and Cultural Organization, Langfang 065000, China

Corresponding author: BAI Jin-feng, jinfengbai@sina.com.cn

Received Date: 2018-12-07
Revised Date: 2019-03-17
Accepted Date: 2019-04-09

摘要:应用传统ICP-MS法测定勘查地球化学样品中Ag、Cd等痕量元素,基体效应和多原子离子干扰严重,准确测定的难度较大。本文基于当前ICP-MS消除干扰技术,分析了ICP-MS标准模式(STD)及动能歧视模式(KED)测定地球化学样品中Ag、Cd等14种痕量元素的有效性,通过比较这两种模式的测定效果,在此基础上确定了各元素的有效测定模式。结果表明:在KED模式下,基体元素如Zr、Nb氧化物的产率降低,基本上消除了Zr、Nb氧化物对痕量元素Ag、Cd的多原子离子干扰。KED模式提高了信噪比,降低了方法检出限,如Ag、Cd的检出限分别为0.004mg/kg、0.005mg/kg,其他12种元素的检出限也低于多目标地球化学调查76种元素分析方案中的检出限。测定痕量元素的准确度显著优于STD模式。实验中采用简单的硝酸-氢氟酸-高氯酸消解样品,残渣用王水复溶,结合KED模式下优选出干扰较小的同位素作为测定同位素,以Rh作为内标校正仪器产生的信号漂移,将样品溶液稀释至1000倍,基体效应降低至最小。本方法经国家一级标准物质的验证,测定结果与认定值相符,可为勘查地球化学提供高质量数据。

关键词: 岩石, 土壤, 水系沉积物, , , 酸溶, 电感耦合等离子体质谱法, 动能歧视模式

要点

(1) 应用KED-ICP-MS方法,降低了基体元素Zr、Nb氧化物的产率,基本上消除了Zr、Nb对Ag、Cd的氧化物干扰。

(2) KED模式提高了信噪比,降低了方法检出限,如Ag、Cd检出限分别为0.004mg/kg、0.005mg/kg。

(3) 样品采用简单的硝酸-氢氟酸-高氯酸消解,实现了多种元素同时测定。

Determination of 14 Trace Elements in Geochemical Samples by ICP-MS Using Kinetic Energy Discrimination Mode

ABSTRACT

BACKGROUND:

Traditional inductively coupled plasma-mass spectrometry (ICP-MS) determination of trace elements such as Ag and Cd in geochemical samples is seriously affected by the matrix effect and multiple polyatomic ions, making it difficult to measure these elements accurately.

OBJECTIVES:

To compare the results of ICP-MS standard mode (STD) and kinetic energy discrimination mode (KED), and determine the valid determination modes of each element.

METHODS:

The samples were digested by HNO3-HF-HClO4, and the residue was dissolved in aqua regia. Under the KED mode, the isotopes with less interference were selected as the determination isotopes. Rh was used as the internal standard element to correct the signal drift, and the sample solution was diluted by 1000. Under these conditions, the matrix effect was minimized.

RESULTS:

The productivity of matrix elements such as Zr and Nb oxides was reduced, and the interference of oxides on Ag and Cd was minimized under the KED mode. The KED mode improved the signal-to-noise ratio and reduced the detection limits of this method with Ag and Cd, detection limits of 0.004mg/kg and 0.005mg/kg, respectively. The detection limits of the other 12 elements were also lower than those of 76 element analysis schemes in a multi-objective geochemical survey. The accuracy of determination of trace elements was significantly better than that of the STD mode.

CONCLUSIONS:

The method has been verified by the first-class national reference material and the analytical results are in good agreement with the certified values. The method provides high-quality data for exploration geochemistry.

KEY WORDS: rock, soil, sediment, Ag, Cd, acid dissolution, inductively coupled plasma-mass spectrometry, kinetic energy discrimination

HIGHLIGHTS

(1) The productivity of matrix elements such as Zr and Nb oxides was reduced, and the interference of oxides on Ag and Cd was minimized under the kinetic energy discrimination mode (KED) by ICP-MS.

(2) The KED mode improved the signal-to-noise ratio and reduced the detection limits of this method.

(3) The samples were decomposed by simple HNO3-HF-HClO4 digestion system and simultaneous determination of various elements was realized.

本文参考文献

[1]

王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(2): 145-151.

Wang J Q, Liu X M. Proficiency testing of the XRF method for measuring 10 major elements in different rock types[J]. Rock and Mineral Analysis, 2016, 35(2): 145-151.

[2]

李小莉, 安树清, 徐铁民, 等. 超细粉末压片制样X射线荧光光谱测定碳酸岩样品中多种元素及CO2[J]. 光谱学与光谱分析, 2015, 35(6): 1741-1745.

Li X L, An S Q, Xu T M, et al. Ultra-fine pressed powder pellet sample preparation XRF determination of multi-elements and carbon dixide in carbonate[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1741-1745.

[3]

戴尽璇, 黄赛杰, 徐立高, 等. 微波消解-原子吸收分光光度法测定海洋沉积物中的铜、锌、铅、镉、铬[J]. 化工时刊, 2017, 31(9): 20-25.

Dai J X, Huang S J, Xu L G, et al. Determination of copper, zinc, chrome, chromium and cadmium in marine sediment by graphite furnace atomic absorption spectrophotometry with microwave digestion[J]. Chemical Industry Times, 2017, 31(9): 20-25.

[4]

卢兵, 杜少文, 盛红宇, 等. AAS、ICP-AES、ICP-MS及XRF测定地质样品中铜铅锌锰的对比研究[J]. 黄金, 2014, 35(9): 78-81.

Lu B, Du S W, Sheng H Y, et al. Contrast research on determination of Cu, Pb, Zn, Mn by AAS, ICP-AES, ICP-MS and XRF in geological samples[J]. Gold, 2014, 35(9): 78-81.

[5]

Lashari A A, Kazi T G, Ali J, et al. Evaluation of sequen-tial extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar Coalfield, Pakistan[J].Atomic Spectroscopy, 2018, 39(5): 203-209.

[6]

何恬叶, 张颖红, 胡子文, 等. 微波消解ICP-OES法测定土壤样品中22种元素[J]. 分析试验室, 2018, 37(1): 84-87.

He T Y, Zhang Y H, Hu Z W, et al. Determination of 22 elements in soil by ICP-OES with microwave digestion[J]. Chinese Journal of Analysis Laboratory, 2018, 37(1): 84-87.

[7]

齐铁铭, 金丽. 电感耦合等离子体发射光谱(ICP-OES)法测定城市污泥中的磷、钾、铬、铜、铅、锌、镍[J]. 湖南有色金属, 2017, 33(4): 68-72.

Qi T M, Jin L. Inductively coupled plasma optical emission spectrometry (ICP-OES) for the determination of P, K, Cr and other elements in sludge[J].Hunan Nonferrous Metals, 2017, 33(4): 68-72.

[8]

Khorge C R, Patwardhan A A. Separation and determina-tion of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J].Atomic Spectroscopy, 2018, 39(2): 75-80.

[9]

Barros J A V A, Alex V, Schiavo D, et al. Determination of ultra-trace levels of Mo in plants by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS)[J]. Microchemical Journal, 2017, 133: 567-571.

[10]

Yang B, Duan F M, Ding J L, et al. Determination of heavy metals in tobacco by ICP-MS and analysis of uncertainty[J].Asian Agricultural Research, 2016, 8(10): 51-54.

[11]

赵志南, 严冬, 何群华, 等. ICP-MS测定《全国土壤污染状况详查》项目中14种元素[J]. 环境化学, 2017, 36(2): 448-452.

Zhao Z N, Yan D, He Q H, et al. Determination of 14 elements in China Soil Pollution Survey by ICP-MS[J]. Environmental Chemistry, 2017, 36(2): 448-452.

[12]

Ahmed M, Chin Y H, Guo X X, et al. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem[J].Journal of Environmental Sciences, 2017, 55: 1-10.

[13]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1): 1-15.

[14]

Chen S Z, Zhu S P, Lu D B, et al. Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J].Atomic Spectroscopy, 2018, 39(2): 55-61.

[15]

王佳翰, 冯俊, 王达成, 等. 电感耦合等离子体质谱法测定地球化学样品中钼镉钨铀锡[J]. 冶金分析, 2017, 37(6): 20-25.

Wang J H, Feng J, Wang D C, et al. Determination of molybdenum, cadmium, tungsten, uranium and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 20-25.

[16]

靳兰兰, 王秀季, 李会来, 等. 电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J]. 冶金分析, 2016, 36(7): 1-14.

Jin L L, Wang X J, Li H L, et al. Orogress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J].Metallurgical Analysis, 2016, 36(7): 1-14.

[17]

马晓凤, 陆源. 碰撞/反应池ICP-MS法研究葛根茶中元素[J]. 广州化工, 2016, 44(15): 126-128.

Ma X F, Lu Y. Study on collision/reaction cell inductively coupled plasma mass spectrometry for analysis of Pueraria Lobata root tea[J]. Guangzhou Chemical Industry, 2016, 44(15): 126-128.

[18]

乔军, 佟克兴, 李安, 等. 电感耦合等离子体质谱(ICP-MS)法测定葡萄酒中的铜、镉、铅[J]. 中国无机分析化学, 2017, 7(4): 33-36.

Qiao J, Tong K X, Li A, et al. Determination of copper, cadmium, lead in wine by inductively coupled plasma mass spectrometry (ICP-MS)[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4): 33-36.

[19]

宋阳, 李现忠, 黄文氢, 等. ICP-MS技术在石油化工中的应用[J]. 石油化工, 2016, 45(10): 1279-1287.

Song Y, Li X Z, Huang W Q, et al. Application of ICP-MS in petrochemical industry[J].Petrochemical Technology, 2016, 45(10): 1279-1287.

[20]

王静, 王鑫, 耿哲, 等. 碰撞池-电感耦合等离子体质谱测定海水重金属[J]. 环境工程学报, 2016, 10(4): 2139-2143.

Wang J, Wang X, Geng Z, et al. Determination of heavy metal in marine waters by collision cell inductively coupled plasma mass spectrometry[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 2139-2143.

[21]

刘金巍, 刘雪松, 边超, 等. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒[J]. 岩矿测试, 2019, 38(1): 85-91.

Liu J W, Liu X S, Bian C, et al. Determination of trace selenium in groundwater by DRC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(1): 85-91.

[22]

蒋慧, 雷宁生, 黎林, 等. KED-ICP-MS测定天然饮用泉水中的18种元素含量[J]. 食品研究与开发, 2016, 37(16): 151-154.

Jiang H, Lei N S, Li L, et al. Determination of 18 elements in drinking spring water by inductively coupled plasma-mass spectrometry with collision cell technology[J]. Food Research and Development, 2016, 37(16): 151-154.

[23]

辛晓东, 胡芳, 孙莉, 等. 基于碰撞池技术的电感耦合等离子体质谱法同时测定水中10种金属元素[J]. 化学分析计量, 2015, 24(6): 35-38.

Xin X D, Hu F, Sun L, et al. Determination of 10 kinds of metal elements in water by inductively coupled plasma-mass spectrometry based on kinetic energy discrimination[J]. Chemical Analysis and Meterage, 2015, 24(6): 35-38.

[24]

贾双珠, 李长安, 解田, 等. ICP-MS分析应用进展[J]. 分析试验室, 2016, 35(6): 731-735.

Jia S Z, Li C A, Xie T, et al. Application of inductively coupled plasma mass spectrometry in material analysis[J].Chinese Journal of Analysis Laboratory, 2016, 35(6): 731-735.

[25]

郭冬发, 李金英, 李伯平, 等. 电感耦合等离子体质谱分析方法的重要进展(2015-2016)[J]. 质谱学报, 2017, 38(5): 599-610.

Guo D F, Li J Y, Li B P, et al. Major advances in inductively coupled plasma mass spectrometry (2015-2016)[J]. Journal of Chinese Mass Spectrometry, 2017, 38(5): 599-610.

[26]

赵志南, 陈观宇, 杨仁康, 等. 土壤样品快速消解与ICP-MS测定条件的优化[J]. 环境化学, 2017, 36(6): 1428-1431.

Zhao Z N, Chen G Y, Yang R K, et al. The optimization of soil digestion and ICP-MS testing conditions[J].Environmental Chemistry, 2017, 36(6): 1428-1431.

[27]

韩建华, 孙传强, 汪曣, 等. 电感耦合等离子体质谱中碰撞反应池的模拟探讨[J]. 冶金分析, 2014, 34(9): 1-7.

Han J H, Sun C Q, Wang Y, et al. Discussion on the simulation of collision reaction cell in inductively coupled plasma-mass spectrometry[J]. Metallurgical Analysis, 2014, 34(9): 1-7.

[28]

李自强, 李小英, 钟琦, 等. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试, 2016, 35(1): 37-41.

Li Z Q, Li X Y, Zhong Q, et al. Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1): 37-41.

[29]

王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574-580.

Wang L, Yang L F, Tan X Z, et al. Determination of Cd in environmental geological samples by inductively coupled plasma-mass spectrometry with membrane desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574-580.

[30]

成学海, 夏传波, 郑建业, 等. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J]. 岩矿测试, 2017, 36(3): 231-238.

Cheng X H, Xia C B, Zheng J Y, et al. Simultaneous determination of 29 trace elements in tourmaline by inductively coupled plasma mass spectrometry with sealed press acid decposition[J]. Rock and Mineral Analysis, 2017, 36(3): 231-238.

[31]

林伟龙, 王正海, 王娟, 等. 电感耦合等离子体质谱测定灌木枝叶中微量元素的样品预处理方法研究[J]. 岩矿测试, 2015, 34(4): 430-435.

Lin W L, Wang Z H, Wang J, et al. Sample pretreatment methods for determination of trace elements in plant by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(4): 430-435.

[32]

鲁照玲, 胡红云, 姚洪, 等. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J]. 岩矿测试, 2012, 31(2): 241-246.

Lu Z L, Hu H Y, Yao H, et al. Study on quantitative analysis method for several heavy metals in soil samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(2): 241-246.

[33]

王云凤, 王江鱼. 四种酸体系溶样法对电感耦合等离子体质谱法测定水系沉积物中16种金属元素的影响[J]. 冶金分析, 2016, 36(7): 63-68.

Wang Y F, Wang J Y. Influence of four sample solution method with acid system on determination of sixteen elements in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 63-68.

[34]

何海洋, 董学林, 于晓琪, 等. 内标校正-电感耦合等离子体发射光谱法测定磷矿石中的磷[J]. 岩矿测试, 2017, 36(2): 117-123.

He H Y, Dong X L, Yu X Q, et al. Determination of phosphorus in phosphate ore by inductively coupled plasma optical emission spectrometry utilizing an internal standard correction method[J]. Rock and Mineral Analysis, 2017, 36(2): 117-123.

[35]

程志中, 谢学锦. 中国西南地区76种元素地球化学填图[J]. 物探化探计算技术, 2007, 29(Supplement): 174-179.

Cheng Z Z, Xie X J. Geochemical mapping for 76 elements in Southwest China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(Supplement): 174-179.

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[3]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[4]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[5]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[6]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[7]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[8]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[9]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[10]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[11]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[12]

张激光, 邵文军, 刘晶晶. 石墨炉原子吸收光谱法测定岩石和土壤中痕量镉. 岩矿测试, 2008, 27(4): 310-312.

[13]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[14]

张勤, 詹秀春, . 地质样品痕量氯溴和硫的X射线荧光光谱法测定. 岩矿测试, 2002, (1): 12-18.

[15]

沙艳梅, 赵学沛, 张歌, 焦万里, 张丹阳. 多向观测电感耦合等离子体发射光谱法同时测定土壤和水系沉积物中常量和微量元素. 岩矿测试, 2008, 27(4): 291-294.

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

刘晔, 第五春荣, 柳小明, 袁洪林. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨. 岩矿测试, 2013, 32(2): 221-228.

[18]

王岚, 杨丽芳, 谭西早, 武朝辉. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉. 岩矿测试, 2017, 36(6): 574-580. doi: 10.15898/j.cnki.11-2131/td.201703130032

[19]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[20]

李国会. X射线荧光光谱法测定土壤和水系沉积物中的痕量铪和锆. 岩矿测试, 2001, (3): 217-219.

计量
  • PDF下载量(56)
  • 文章访问量(325)
  • HTML全文浏览量(14)
  • 被引次数(0)
目录

Figures And Tables

动能歧视模式ICP-MS测定地球化学样品中14种痕量元素

徐进力, 邢夏, 唐瑞玲, 胡梦颖, 张鹏鹏, 白金峰, 张勤