【引用本文】 蔡敬怡, 谭科艳, 路国慧, 等. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J]. 岩矿测试, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123
CAI Jing-yi, TAN Ke-yan, LU Guo-hui, et al. The Spatial Distribution Characteristics of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of the Abandoned Wanshan Mercury Mines, Guizhou Province[J]. Rock and Mineral Analysis, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123

贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征

1. 

自然资源部生态地球化学重点实验室, 国家地质实验测试中心, 北京 100037

2. 

中国地质大学(北京), 北京 100083

3. 

青岛大学环境科学与工程学院, 山东 青岛 266071

收稿日期: 2018-11-15  修回日期: 2019-03-13  接受日期: 2019-04-09

基金项目: 国家自然科学基金项目“石漠化地区土壤侵蚀作用的大气成因10Be同位素地球化学示踪研究”(41673022)

作者简介: 蔡敬怡, 硕士研究生, 研究方向为环境地球化学。

通信作者: 谭科艳, 博士, 副研究员, 主要从事环境地球化学研究。E-mail:tankeyan2017@163.com

The Spatial Distribution Characteristics of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of the Abandoned Wanshan Mercury Mines, Guizhou Province

1. 

Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China

2. 

China University of Geosciences(Beijing), Beijing 100083, China

3. 

College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China

Corresponding author: TAN Ke-yan, tankeyan2017@163.com

Received Date: 2018-11-15
Revised Date: 2019-03-13
Accepted Date: 2019-04-09

摘要:废弃矿山虽已不再开采,但废弃矿坑、旧冶炼场地、埋填的尾矿坝受雨水淋滤仍可通过地表径流对下游地区造成污染。研究废弃矿山水系沉积物及悬浮物中重金属的沿河道分布及相互关系具有重要的现实意义。本文以贵州万山汞矿区下溪河小流域系统作为研究区域,对沉积物及悬浮物中重金属元素进行初步调查,为监测和污染耕地进行修复提供基础资料。通过湿法消解的前处理方法,利用电感耦合等离子体质谱和原子荧光光谱法测定了沉积物及悬浮物样品中Cr、Ni、Cu、Cd、Pb、As、Hg、Zn、Co含量,查明污染现状及空间分布特征,以获取矿区污染物向下游迁移、扩散的信息。结果表明:沉积物中Hg含量范围为0.10~16.0μg/g(干重),平均值为5.79μg/g,是《国家土壤环境质量标准》二级土壤Hg限值的几十倍;Cd在部分站点超标;Ni、Cu、Co含量平均值均不超标;Hg和Cd的变异系数较大,显示空间分布不均的特征。沉积物中Hg为高潜在生态风险级别。研究区沉积物及悬浮物中的Hg浓度与河段的水动力条件有关,最大值出现在河道宽阔、水流平缓的站点。由于万山汞矿早已停止开采和冶炼,本研究提出,自然条件下废弃矿区的风化淋滤引起颗粒物输送是造成河流下游Hg和Cd污染的原因。

关键词: 小流域系统, 沉积物, 悬浮物, 重金属, 万山汞矿区

要点

(1) 查明了废弃汞矿山河流沉积物及悬浮物中典型重金属元素的污染现状。

(2) 对沉积物及悬浮物中重金属元素空间分布特征进行比较和讨论。

(3) 对沉积物中重金属元素的潜在生态风险进行了评价。

The Spatial Distribution Characteristics of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of the Abandoned Wanshan Mercury Mines, Guizhou Province

ABSTRACT

BACKGROUND:

Although abandoned mines are no longer exploited, waste mines, old smelting sites and buried tailings can still pollute downstream areas through rainwater leaching and surface runoff. The study on the distribution and relationship of heavy metals in sediments and suspended particulate matter (SPM) along rivers in abandoned mines has important significance.

OBJECTIVES:

To preliminarily investigate heavy metals in river sediments and SPM in Wanshan Mercury Mines, and provide basic information for monitoring and remediation of contaminated cultivated land.

METHODS:

The contents of Cr, Ni, Cu, Cd, Pb, As, Hg, Zn and Co in sediments and SPM samples were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS) with wet digestion pretreatment. The pollution status and spatial distribution characteristics were identified in order to obtain information of pollutant migration and diffusion downstream.

RESULTS:

The total mercury content (Hg) in sediments ranged from 0.10 to 16.0μg/g (dry weight), averaging 5.79μg/g, which was ten times higher than the Hg limit of the Class Ⅱ soil environmental quality standard of China. The average contents of Ni, Cu and Co were not higher than the standard. The variation coefficients of Hg and Cd were large, indicating the heterogeneously spatial distribution of Hg and Cd. Mercury in sediments reached a high potential ecological risk level.

CONCLUSIONS:

The Hg in sediments and SPM in the study area are related to the hydrodynamic conditions, and the maximum values occurred at the sites with broad river channel and low flow rate. As the mining and smelting of Wanshan Mercury Mine has been stopped for a long time, the weathering and leaching of the abandoned mining area under natural conditions will cause Hg and Cd pollution in the lower reaches of the river.

KEY WORDS: small tributary, sediment, suspended matter, heavy metals, Wanshan Mercury Mines

HIGHLIGHTS

(1) Investigation of the pollution status of typical heavy metals in river sediments and suspended solids of abandoned mercury mines.

(2) Comparison and discussion of the spatial distribution characteristics of heavy metals in sediments and suspended matter.

(3) Assessment of the potential ecological risks of heavy metals in the sediments.

本文参考文献

[1]

Dave J, Hugh P, Ceri J, et al.Abandoned Mines and the Water Environment[R].Science Project SC030136-41, UK Environment Agency, 2008.

[2]

Ciszewski D, Aleksander-Kwaterczak U, Pociecha A, et al. Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine[J].Environmental Monitoring and Assessment, 2013, 185(12): 9825-9842. doi: 10.1007/s10661-013-3295-z

[3]

Lecce S A, Pavlowsky R T. Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA[J].Geomorphology, 2014, 206: 122-132. doi: 10.1016/j.geomorph.2013.10.004

[4]

DeGraff J V.Addressing the Toxic Legacy of Abandoned Mines on Public Land in the Western United States[M]//Reviews in Engineering Geology (Volume XⅦ).DOI: 10.1130/2007.4017(01).

[5]

Unger C, Lechner A M, Glenn V, et al.Mapping Impacts and Prioritising Rehabilitation of Abandoned Mines at a National Level in Australia[R].Brisbane: Life of Mine Conference, 2012.

[6]

贵州省铜仁市万山特区政府.贵州铜仁典型区域土壤污染综合治理项目实施方案[R].2014.

Government of Wanshan Special Zone, Tongren City, Guizhou Province.Implementation Plan of Comprehensive Soil Pollution Control Project in Typical Area of Tongren City, Guizhou Province[R].2014.

[7]

尹德良, 何天容, 安艳玲, 等. 万山汞矿区居民食用大米的汞暴露风险评估[J]. 安全与环境学报, 2016, 16(3): 330-337.

Yin D L, He T R, An Y L, et al. Mercury exposure and its health assessment for the residents in Wanshan mercury-mining areas via the rice consumption[J]. Journal of Safety and Environment, 2016, 16(3): 330-337.

[8]

胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 2015, 24(5): 879-885.

Hu G C, Zhang L J, Qi J Y, et al. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan mercury mine area, Guizhou Province[J]. Ecology and Environmental Sciences, 2015, 24(5): 879-885.

[9]

湛天丽, 黄阳, 滕应, 等. 贵州万山汞矿区某农田土壤重金属[J]. 土壤通报, 2017, 48(2): 474-480.

Zhan T L, Huang Y, Teng Y, et al. Pollution characteristics and sources of heavy metals in farmland soils in Wanshan mining areas, Guizhou Province[J]. Chineae Journal of Soil Science, 2017, 48(2): 474-480.

[10]

吴兰艳, 姚元勇, 唐帮成, 等. 万山汞矿区周边土壤重金属污染调查及其风险评价[J]. 铜仁学院学报, 2017, 19(6): 85-90. doi: 10.3969/j.issn.1673-9639.2017.06.021

Wu L Y, Yao Y Y, Tang B C, et al. Pollution investigation and risk assessment of heavy metals in soils from the sourounding areas of Wanshan mining areas[J].Journal of Tongren University, 2017, 19(6): 85-90. doi: 10.3969/j.issn.1673-9639.2017.06.021

[11]

Zhang H, Feng X, Larssen T, et al. Fractionation, distribution and transport of mercury in rivers and tributaries around Wanshan Hg mining district, Guizhou Province, Southwestern China:Part 1-Total mercury[J].Applied Geochemistry, 2010, 25: 633-641. doi: 10.1016/j.apgeochem.2010.01.006

[12]

赵西强, 庞绪贵, 王增辉, 等. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征[J]. 岩矿测试, 2015, 34(2): 245-251.

Zhao X Q, Pang X G, Wang Z H, et al. Study on the characteristics of heavy metal contents and annual fluxes of atmospheric dry and wet deposition in Jinan City using AFS and ICP-MS[J]. Rock and Mineral Analysis, 2015, 34(2): 245-251.

[13]

李自强, 李小英, 钟琦, 等. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试, 2016, 35(1): 37-41.

Li Z Q, Li X Y, Zhong Q, et al. Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1): 37-41.

[14]

田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88.

Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88.

[15]

黎彤. 化学元素的地球丰度[J]. 地球化学, 1976, (3): 167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004

Li T. Chemical element abundances in the Earth and its major shells[J].Geochimica, 1976, (3): 167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004

[16]

陈若思, 刘定富, 武晓阳, 等. 红枫湖沉积物中汞污染评价[J]. 贵州化工, 2012, 37(4): 40-42. doi: 10.3969/j.issn.1008-9411.2012.04.020

Chen R S, Liu D F, Wu X Y, et al. An assessment of mercury pollution in sediments of Hongfeng Lake[J].Guizhou Chemical Industry, 2012, 37(4): 40-42. doi: 10.3969/j.issn.1008-9411.2012.04.020

[17]

Wu B B, Wang G Q, Wu J, et al. Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs[J].PLoS ONE, 2014, 9(7). doi: 10.1371/journal.pone.0102101

[18]

Chen C X, Zheng B H, Jiang X, et al. Spatial distribution and pollution assessment of mercury in sediments of Lake Taihu, China[J].Journal of Environmental Sciences, 2013, 25(2): 316-325. doi: 10.1016/S1001-0742(12)60033-3

[19]

Garcia-Ordiales E, Loredo J, Covelli S, et al. Trace metal pollution in freshwater sediments of the world's largest mercury mining district:Sources, spatial distribution and environmental implications[J].Journal of Soils and Sediments, 2017, 17(7): 1893-1904. doi: 10.1007/s11368-016-1503-5

[20]

仇广乐, 冯新斌, 王少锋, 等. 贵州省万山汞矿区地表水中不同形态汞的空间分布特点[J]. 地球与环境, 2004, 32(3-4): 77-82.

Qiu G L, Feng X B, Wang S F, et al. Mercury speciations and their distribution in surface water from Wanshanmercury mining district, Guizhou Province[J]. Earth and Environment, 2004, 32(3-4): 77-82.

[21]

USEPA.National Recommended Water Quality Criteria-Correction[R].US Environmental Protection Agency.1999822-Z-99-001.1999.

[22]

Håkanson L. An ecological risk index for aquatic pollution control-Sedimentological approach[J].Water Research, 1980, 14: 975-1001. doi: 10.1016/0043-1354(80)90143-8

[23]

赵志鹏.重金属镉的土壤空间分布机制及迁移转化过程研究[D].贵州: 贵州大学, 2015: 1-51.

Zhao Z P.Cadmium Distribution and Transformation in Soil Profile and Effection Factor[D].Guizhou: Guizhou University, 2015: 1-51.

[24]

何天容, 冯新斌, 郭艳娜, 等. 红枫湖沉积物中汞的环境地球化学循环[J]. 环境科学, 2008, 29(7): 1768-1774. doi: 10.3321/j.issn:0250-3301.2008.07.002

He T R, Feng X B, Guo Y N, et al. Geochemical cycling of mercury in the sediment of Hongfeng Reservior[J].Environmental Science, 2008, 29(7): 1768-1774. doi: 10.3321/j.issn:0250-3301.2008.07.002

[25]

Rügner H, Schwientek M, Milačič R, et al. Particle bound pollutants in rivers:Results from suspended sediment sampling in Globaqua River Basins[J].Science of the Total Environment, 2019, 647: 645-652. doi: 10.1016/j.scitotenv.2018.08.027

[26]

王珊珊, 潘存鸿, 李宏, 等. 杭州湾泥沙中重金属元素的分布及影响因[J]. 中国环境科学, 2017, 37(12): 4701-4709. doi: 10.3969/j.issn.1000-6923.2017.12.036

Wang S S, Pan C H, Li H, et al. Distribution and influence factor of Cu, Pb, Hg in surficial sediments and suspended sediments of Hangzhou Bay[J].China Environmental Science, 2017, 37(12): 4701-4709. doi: 10.3969/j.issn.1000-6923.2017.12.036

[27]

Pont D, Day J W, Ibáñez C, et al. The impact of two large floods (1993-1994) on sediment deposition in the Rhône delta:Implications for sustainable management[J].Science of the Total Environment, 2017, 609: 251-262. doi: 10.1016/j.scitotenv.2017.07.155

[28]

Rimondi V, Costagliola P, Gray J E, et al. Mass loads of dissolved and particulate mercury and other trace elements in the Mt.Amiata mining district, Southern Tuscany (Italy)[J].Environmental Science and Pollution Research, 2014, 21(8): 5575-5585. doi: 10.1007/s11356-013-2476-1

[29]

Balogh S J, Meyer M L, Johnson D K, et al. Mercury and suspended sediment loadings in the Lower Minnesota River[J]. Environmental Science & Technology, 1997, 31(1): 198-202.

[30]

Zhang J B, Zhou F X, Chen C L, et al. Spatial distri-bution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China[J].PLoS ONE, 2018, 13(8). doi: 10.1371/journal.pone.0201414

[31]

Zhu W, Song Y, Adediran G A, et al. Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter[J].Geochimica et Cosmochimica Acta, 2018, 220: 158-179. doi: 10.1016/j.gca.2017.09.045

[32]

Lučić M, Jurina I, Ščančar J, et al. Sedimentological and geochemical characterization of river suspended particulate matter (SPM) sampled by time-integrated mass flux sampler (TIMS) in the Sava River (Croatia)[J].Journal of Soils and Sediments, 2019, 19(2): 989-1004. doi: 10.1007/s11368-018-2104-2

[33]

Annan S T, Sanful P O, Lartey-Young G, et al. Spatial and temporal patterns of variation in environmental quality of water and sediments of streams in mined and unmined areas with emphasis on mercury (Hg) and arsenic (As)[J].Journal of Geoscience and Environment Protection, 2018, 6(9): 125-140. doi: 10.4236/gep.2018.69010

相似文献(共19条)

[1]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[2]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[3]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[4]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[5]

郝红, 高博, 王健康, 周怀东, 陆瑾, 殷淑华, 朱成. 滦河流域沉积物中重金属分布特征及风险评价. 岩矿测试, 2012, 31(6): 1000-1005.

[6]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

[7]

王喆, 谭科艳, 陈燕芳, 刘斯文, 朱晓华, 刘久臣, 汤奇峰, 袁欣. 南方某工业区大气总悬浮颗粒物重金属来源解析及其对土壤环境质量的影响. 岩矿测试, 2016, 35(1): 82-89. doi: 10.15898/j.cnki.11-2131/td.2016.01.014

[8]

王增焕, 王许诺, 谷阳光, 陈瑛娜. 疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属. 岩矿测试, 2017, 36(4): 360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011

[9]

刘霞, 徐青, 史淼森, 余晓平, 郭亚飞, 邓天龙. 沱江流域沉积物中氮赋存状态及其垂向分布特征. 岩矿测试, 2018, 37(3): 320-326. doi: 10.15898/j.cnki.11-2131/td.201801250012

[10]

胡恭任, 于瑞莲, 赵金秀, 刘小进, 涂湘林. 泉州湾洛阳江河口桐花树和秋茄红树植物中重金属元素的分布与富集特征. 岩矿测试, 2010, 29(3): 236-240.

[11]

张卫华. 微堆中子活化技术测定多金属结核和海洋沉积物中多元素. 岩矿测试, 1992, (3): 246-248.

[12]

滕云业. 中太平洋多金属结核和沉积物的地质特征及样品采集. 岩矿测试, 1997, (2): 104-108.

[13]

周文勤. 加速器质谱分析超痕量铍同位素研究深海沉积物沉积速率和多金属结核生长速率 . 岩矿测试, 1997, (2): 109-117.

[14]

葛晓立, 刘浏, 徐清, 刘晓端, 王英华. 密云水库沉积物中磷的形态和分布特征. 岩矿测试, 2003, (2): 81-85.

[15]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[16]

田衎, 杨珺, 孙自杰, 周裕敏, 邢书才, 封跃鹏. 矿区污染场地土壤重金属元素分析标准样品的研制. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

[17]

魏峰, 沈小明, 陈海英, 沈加林. 土壤和沉积物中22种有机氯农药和8种多氯联苯的气相色谱分析. 岩矿测试, 2013, 32(6): 952-958.

[18]

袁建, 王亚平, 许春雪. 湖泊沉积物中磷形态标准物质研制. 岩矿测试, 2014, 33(6): 857-862.

[19]

陈保冬, 张莘, 伍松林, 李林凤. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用. 岩矿测试, 2019, 38(1): 1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083

计量
  • PDF下载量(30)
  • 文章访问量(110)
  • HTML全文浏览量(38)
  • 被引次数(0)
目录

Figures And Tables

贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征

蔡敬怡, 谭科艳, 路国慧, 殷效彩, 郑宇, 邵鹏威, 王竞, 杨永亮