【引用本文】 田志仁, 封雪, 姜晓旭, 等. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J]. 岩矿测试, 2019, 38(5): 479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119
TIAN Zhi-ren, FENG Xue, JIANG Xiao-xu, et al. Evaluation of Data Quality on the Detection of Heavy Metals in Soils by Atomic Absorption Spectrometry or Atomic Fluorescence Spectrometry and X-ray Fluorescence Spectrometry in Ecological Environment Monitoring[J]. Rock and Mineral Analysis, 2019, 38(5): 479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价

1. 

中国环境监测总站, 国家环境保护环境监测质量控制重点实验室, 北京 100012

2. 

北京科技大学, 北京 100083

收稿日期: 2018-12-03  修回日期: 2019-06-12  接受日期: 2019-07-16

基金项目: 国家重点研发计划项目“土壤高精度多参数现场快速检测系统集成与应用示范”(2017YFF0108204)

作者简介: 田志仁, 硕士, 工程师, 从事土壤环境监测工作。E-mail:1731427795@qq.com

通信作者: 夏新, 博士, 研究员, 从事土壤环境监测工作。E-mail:13811875524@163.com

Evaluation of Data Quality on the Detection of Heavy Metals in Soils by Atomic Absorption Spectrometry or Atomic Fluorescence Spectrometry and X-ray Fluorescence Spectrometry in Ecological Environment Monitoring

1. 

State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China

2. 

University of Science and Technology Beijing, Beijing 100083, China

Corresponding author: XIA Xin, 13811875524@163.com

Received Date: 2018-12-03
Revised Date: 2019-06-12
Accepted Date: 2019-07-16

摘要:当前我国生态环境监测工作中,测定土壤重金属等无机元素全量所采用的标准方法主要为原子吸收光谱法(AAS)、原子荧光光谱法(AFS)和波长色散X射线荧光光谱法(WDXRF)等。为掌握AAS、AFS和WDXRF等方法测试结果的有效性和可比性,本文选取了20个来自全国不同区域、不同类型的实际土壤样品,通过盲样方式插入国家土壤环境监测任务样品批次中,分发至3~5个实验室,采用AAS/AFS、WDXRF和便携式X射线荧光光谱法(p-XRF)平行测定Cr、Ni、Cu、Zn、As、Hg、Cd、Pb、V和Mn十个元素全量。结果表明:元素含量水平分布均匀(在≤ 1.0、1.0~2.0、2.0~10.0及>10.0水平均有分布);85%以上样品Cr、Ni、Cu、Zn和Pb元素WDXRF方法的实验室间相对偏差(RD)更理想,60%样品As元素AFS方法的RD更优,元素含量对WDXRF方法的RD有更明显影响。总体上,AAS/AFS和WDXRF两类方法实验室间精密度控制水平均较高,WDXRF法更理想。进一步分析AAS/AFS和WDXRF方法间平行性(以这两类方法测试结果的相对偏差RD'进行评价),Cr、Ni、Cu和Zn元素的RD'基本低于20%,As和Pb元素80%以上的RD'低于20%,Pearson相关性和线性关系分析表明这两类方法有较高的可比性;另外,Cr、Ni、Cu、Zn、Pb和As元素的p-XRF与AAS/AFS方法测试结果也有较理想的可比性。本研究认为,AAS/AFS和WDXRF两类方法具有等同测试效果,实际监测工作中Cd、Hg等含量较低元素宜选择检出限较低的AAS/AFS法;因WDXRF方法的前处理过程简单易控,大批量土壤分析中使用该方法更加高效,在特定实验条件下p-XRF方法也有可接受的定量效果。

关键词: 土壤, 重金属元素, 原子吸收光谱法, 原子荧光光谱法, 波长色散X射线荧光光谱法, 便携式X射线荧光光谱法, 相对偏差

要点

(1) 研究结果均由实际土壤样品通过盲样平行比对测试得到。

(2) AAS/AFS法和WDXRF法具有等同的测试效果,WDXRF法有更理想的精密度控制水平。

(3) 元素含量高低对WDXRF法的精密度控制水平影响更为明显。

(4) 大批量土壤样品监测用WDXRF法更加高效,Cd、Hg等低含量元素宜选择检出限较低的AAS/AFS法。

Evaluation of Data Quality on the Detection of Heavy Metals in Soils by Atomic Absorption Spectrometry or Atomic Fluorescence Spectrometry and X-ray Fluorescence Spectrometry in Ecological Environment Monitoring

ABSTRACT

BACKGROUND:

In current ecological environmental monitoring, the standard methods used to determine the total contents of inorganic elements, such as heavy metals in soil, include atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) and wavelength dispersive X-ray fluorescence spectrometry (WDXRF).

OBJECTIVES:

To evaluate the quality, validity and mutual comparability of the results obtained by different analytical methods.

METHODS:

Twenty actual soil samples of different types from different regions in China were selected and inserted into the national soil environmental monitoring sample batch blind, and sent to 3-5 laboratories. AAS/AFS, WDXRF and portable X-ray fluorescence spectrometry (p-XRF) were used to determine the total amount of Cr, Ni, Cu, Zn, As, Hg, Cd, Pb, V and Mn in parallel.

RESULTS:

The content of these elements was equally distributed at levels of ≤ 1.0, 1.0-2.0, 2.0-10.0, and 10.0. The results show that 85% samples had better inter-laboratory relative deviation (RD) of the WDXRF method in terms of Cr, Ni, Cu, Zn and Pb. On the other hand, 60% samples had better RD using AFS method for the As determination. Element content had more obvious effect on RD for WDXRF method. Generally, the inter-laboratory precision control was good for both AAS/AFS and WDXRF methods, and the WDXRF method was more desirable. Through further analysis of the parallelism between AAS/AFS and WDXRF methods (evaluated as the relative deviation RD' of the analytical results of these two methods), it showed that almost all the RD' of Cr, Ni, Cu and Zn was less than 20%, and more than eighty percent RD' of As and Pb was less than 20%. The results of Pearson correlation and linear relationship analysis also show that the analytical results of two methods were highly comparable. Additionally, there was also good comparability between the results of AAS/AFS and p-XRF methods for determination of Cr, Ni, Cu, Zn, Pb and As.

CONCLUSIONS:

AAS/AFS method and WDXRF method have equivalent test results. In actual monitoring task, the determination of Cd and Hg with lower contents should be determined by AAS/AFS which have lower detection limits. WDXRF should be chosen for the analysis large quantities of soil. Under specific experimental conditions, the p-XRF method also can obtain an acceptable quantitative results.

KEY WORDS: soil, heavy metal elements, atomic absorption spectrometry, atomic fluorescence spectrometry, wavelength dispersive X-ray fluorescence spectrometry, portable X-ray fluorescence spectrometry, relative deviation

HIGHLIGHTS

(1) All the results of the study were obtained from actual soil samples through blind sample comparison tests.

(2) The monitoring results of AAS/AFS method and WDXRF method had the same testing effect and WDXRF method had a better precision control level.

(3) Element content had a more obvious influence on the precision control level of WDXRF method.

(4) WDXRF method was more efficient for large quantities of soil sample monitoring and AAS/AFS method could be selected for determination of low-content elements such as Cd and Hg because of their low detection limits.

本文参考文献

[1]

庄国泰. 我国土壤污染现状与防控策略[J]. 中国科学院院刊, 2015, 30(4): 477-483.

Zhuang G T. Current situation of national soil pollution and strategies on prevention and control[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 477-483.

[2]

焦位雄, 杨虎德, 冯丹妮, 等. Cd、Hg、Pb胁迫下不同作物可食部分重金属含量及累积特征研究[J]. 农业环境科学学报, 2017, 36(9): 1726-1733.

Jiao W X, Yang H D, Feng D N, et al. Heavy metal content and accumulation characteristics in the edible parts of different crops under Cd, Hg, Pb and stress[J]. Journal of Agro-Environment Science, 2017, 36(9): 1726-1733.

[3]

郭书海, 吴波, 张玲妍, 等. 农产品重金属超标风险:发生过程与预警防控[J]. 农业环境科学学报, 2018, 37(1): 1-8.

Guo S H, Wu B, Zhang L Y, et al. Risk of heavy metal concentration in agricultural product exceeding the safe standard:Occurrence process, forewarning and control[J]. Journal of Agro-Environment Science, 2018, 37(1): 1-8.

[4]

金晓丹, 罗栋源, 马华菊, 等. 广西某铅锌矿区土壤镉、铅、砷形态分布对水稻重金属的影响[J]. 西南农业学报, 2018, 31(6): 1293-1299.

Jin X D, Luo D Y, Ma H J, et al. Effect of soil Cd, Pb, As and their fractions distribution on corresponding heavy metals in rice surrounding lead-zinc mines in Guangxi Province[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1293-1299.

[5]

钱贞兵, 孙立剑, 徐升, 等. 淮河流域安徽段土壤重金属元素分布特征研究[J]. 岩矿测试, 2018, 37(2): 193-200.

Qian Z B, Sun L J, Xu S, et al. Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 193-200.

[6]

孙鹏, 李艳伟, 张连科, 等. 包头市典型工业区表层土壤中重金属污染状况及其潜在生态风险研究[J]. 岩矿测试, 2016, 35(4): 433-439.

Sun P, Li Y W, Zhang L K, et al. Heavy metal pollution in topsoil from the Baotou industry area and its potential ecological risk evaluation[J]. Rock and Mineral Analysis, 2016, 35(4): 433-439.

[7]

王腾云, 周国华, 孙彬彬, 等. 福建沿海地区土壤-稻谷重金属含量关系与影响因素研究[J]. 岩矿测试, 2016, 35(3): 295-301.

Wang T Y, Zhou G H, Sun B B, et al. The relationship between heavy metal contents of soils and rice in coastal areas, Fujian Province, including influencing factors[J]. Rock and Mineral Analysis, 2016, 35(3): 295-301.

[8]

余广学, 张金震, 王烨, 等. 郑州市土壤重金属污染状况和质量评价[J]. 岩矿测试, 2015, 34(3): 340-345.

Yu G X, Zhang J Z, Wang Y, et al. Investigation and evaluation of heavy metal pollution in soil from Zhengzhou City[J]. Rock and Mineral Analysis, 2015, 34(3): 340-345.

[9]

昝树婷. 原子吸收光谱法在土壤环境监测中的应用[J]. 安徽农业科学, 2014, 42(36): 13174-13176.

Zan S T. The applications of atomic absorption spectrometry in soil environmental monitoring[J]. Journal of Anhui Agricultural Sciences, 2014, 42(36): 13174-13176.

[10]

朱静, 雷晶, 张虞, 等. 关于中国土壤环境监测分析方法标准的思考与建议[J]. 中国环境监测, 2019, 35(2): 1-12.

Zhu J, Lei J, Zhang Y, et al. Thoughts and suggestions on environmental monitoring method standards of soil in China[J]. Environmental Monitoring in China, 2019, 35(2): 1-12.

[11]

杨叶琴, 赵昌平, 赵杰, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J]. 理化检验(化学分册), 2019, 55(1): 63-67.

Yang Y Q, Zhao C P, Zhao J, et al. Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(1): 63-67.

[12]

鲁照玲, 胡红云, 姚洪, 等. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J]. 岩矿测试, 2012, 31(2): 241-246.

Lu Z L, Hu H Y, Yao H, et al. Study on quantitative analysis method for several heavy metals in soil sample by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(2): 241-246.

[13]

胡冠九, 陈素兰, 王光, 等. 中国土壤环境监测方法现状、问题及建议[J]. 中国环境监测, 2018, 34(2): 10-19.

Hu G J, Chen S L, Wang G, et al. Environmental monitoring methods for soil in China:Situation, problems and suggestions[J]. Environmental Monitoring in China, 2018, 34(2): 10-19.

[14]

马俊杰, 杨琦, 王业耀, 等. 土壤重金属快速监测技术研究与应用进展[J]. 中国环境监测, 2015, 31(3): 132-138.

Ma J J, Yang Q, Wang Y Y, et al. Research progress of rapid monitoring technology for heavy metals in soils[J]. Environmental Monitoring in China, 2015, 31(3): 132-138.

[15]

, , 加那尔别克·西里甫汗, 等. 在土壤及底泥重金属测定中不同前处理和分析方法的比较[J]. 环境化学, 2013, 32(2): 302-306.

Zhang L L, Liang X, Janarbek X, et al. Comparison of different pretreatment and analytical method of heavy metals in soil and sediment samples[J]. Environmental Chemistry, 2013, 32(2): 302-306.

[16]

龙加洪, 谭菊, 吴银菊, 等. 土壤重金属含量测定不同消解方法比较研究[J]. 中国环境监测, 2013, 29(1): 123-126.

Long J H, Tan J, Wu Y J, et al. A comparative study on the detection of heavy metal in soil with different digestion methods[J]. Environmental Monitoring in China, 2013, 29(1): 123-126.

[17]

刀谞, 霍晓芹, 张霖琳, 等. 我国土壤中主要元素监测技术及难点[J]. 中国环境监测, 2018, 34(5): 12-21.

Dao X, Huo X Q, Zhang L L, et al. Over view of main soil element heavy metal monitoring technology and difficulties in China[J]. Environmental Monitoring in China, 2018, 34(5): 12-21.

[18]

李海峰, 王庆仁, 朱永官, 等. 土壤重金属测定两种前处理方法的比较[J]. 环境化学, 2006, 25(1): 108-109.

Li H F, Wang Q R, Zhu Y G, et al. Comparison of two pretreatment methods for determination of heavy metals in soil[J]. Environmental Chemistry, 2006, 25(1): 108-109.

[19]

刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677.

Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677.

[20]

任东, 沈俊, 任顺, 等. 一种面向土壤重金属含量检测的X射线荧光光谱预处理方法研究[J]. 光谱学与光谱分析, 2018, 38(12): 3934-3940.

Ren D, Shen J, Ren S, et al. An X-ray fluorescence spectroscopy pretreatment method for detection of heavy metal content in soil[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3934-3940.

[21]

彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386-1395.

Peng H L, Yang Z S, Zhao J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386-1395.

[22]

邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595.

Kuang R X, Hu W Y, He Y, et al. Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural[J]. Soils, 2015, 47(3): 589-595.

[23]

王宇游, 夏新, 米方卓, 等. 《土壤环境质量标准》中六种重金属测定精密度控制指标研究[J]. 土壤通报, 2014, 45(6): 1500-1504.

Wang Y Y, Xia X, Mi F Z, et al. Study on the indexes of precision quality control for 6 heavy metals in 〈Soil Environmental Quality Standard〉[J]. Chinese Journal of Soil Science, 2014, 45(6): 1500-1504.

[24]

夏新, 陈纯, 米方卓, 等. 原子荧光法测定土壤中砷的质量控制评价标准研究[J]. 中国环境监测, 2015, 31(3): 19-23.

Xia X, Chen C, Mi F Z, et al. Study of evaluation standards of quality control of As in soil by atomic fluorescence spectrometry[J]. Environmental Monitoring in China, 2015, 31(3): 19-23.

[25]

中国环境监测总站. 质量体系文件[M] . 北京: 中国环境科学出版社, 1990: 87-91.

China Environmental Monitoring Station . Quality System Document[M] . Beijing: China Environmental Science Press, 1990: 87-91.
[26]

国家环境保护总局,中国环境监测总站. 中国土壤元素背景值[M] . 北京: 中国环境科学出版社, 1990: 87-91.

State Environmental Protection Administration,China Environmental Monitoring Station. Background Values of Soil Elements in China[M] . Beijing: China Environmental Science Press, 1990: 87-91.
[27]

刘江斌, 党亮, 殷桃刚, 等. 粉末压片-X射线荧光光谱法测定土壤中的铜铅锌砷锑钴铬镍等重金属元素[J]. 分析测试技术与仪器, 2015, 21(1): 42-46.

Liu J B, Dang L, Yin T G, et al. Determination of heavy metals elements copper, lead, zinc, arsenic, antimony, cobalt, chromium, and nickel in soil by X-ray fluorescence spectrometry with powder pelleting[J]. Analysis and Testing Technology and Instruments, 2015, 21(1): 42-46.

[28]

张环月, 季守华, 李春艳, 等. X射线荧光光谱法测定铬、钒、钛共存的钛合金中12种元素[J]. 冶金分析, 2014, 34(5): 30-34.

Zhang H Y, Ji S H, Li C Y, et al. Determination of twelve elements coexisting with chromium, vanadium and titanium in titanium alloys by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(5): 30-34.

[29]

冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113-3118.

Ran J, Wang D J, Wang C, et al. Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3113-3118.

[30]

陈素兰, 胡冠九. 全国土壤污染状况调查样品元素分析测试技术探讨[J]. 中国环境监测, 2007, 23(5): 6-10.

Chen S L, Hu G J. A preliminarry discussion on the analysis methods for inorganic elements used in the national investigation program of soil pollution[J]. Environmental Monitoring in China, 2007, 23(5): 6-10.

相似文献(共20条)

[1]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[2]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

刘明华, 杨晓波, 佟成冶, 马力, 乌爱军. 辽宁省浑河流域底质中重金属元素地球化学特征. 岩矿测试, 2008, 27(3): 184-188.

[5]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[6]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[7]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[8]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[9]

马莉, 李玉武. 大气颗粒物样品波长色散X射线荧光光谱法无机元素测量结果不确定度评估. 岩矿测试, 2007, 26(3): 219-224.

[10]

李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素. 岩矿测试, 2014, 33(6): 839-843.

[11]

于兆水, 张勤, 李小莉, 樊守忠, 潘晏山, 李国会. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素. 岩矿测试, 2014, 33(6): 844-848.

[12]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

[13]

段鸿莺, 梁国立, 苗建民. 波长色散X射线荧光光谱法测定古陶瓷胎釉中37 个主次痕量元素. 岩矿测试, 2011, 30(3): 337-342.

[14]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[15]

黎香荣, 陈永欣, 罗明贵, 马丽方, 韦新红. 波长色散X射线荧光光谱法同时测定钒渣中的主次量成分. 岩矿测试, 2011, 30(2): 222-225.

[16]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

[17]

德国耶拿分析仪器股份公司. 连续光源火焰原子吸收法应用报告——发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2007, 26(5): 文后I-文后I.

[18]

田琼, 张文昔, 宋嘉宁, 吕善胜. 波长色散X射线荧光光谱法测定锌精矿中主次量成分. 岩矿测试, 2012, 31(3): 463-467.

[19]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[20]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

计量
  • PDF下载量(18)
  • 文章访问量(244)
  • HTML全文浏览量(25)
  • 被引次数(0)
目录

Figures And Tables

生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价

田志仁, 封雪, 姜晓旭, 李宗超, 李妤, 夏新