【引用本文】 赵宗生, 赵小学, 姜晓旭, 等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106
ZHAO Zong-sheng, ZHAO Xiao-xue, JIANG Xiao-xu, et al. Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法

1. 

河南省土壤重金属污染监测与修复重点实验室, 河南 济源 459000

2. 

中国环境监测总站, 北京 100012

收稿日期: 2018-09-19  修回日期: 2019-03-14  接受日期: 2019-04-09

基金项目: 国家环境保护公益性行业科研专项“重点防控重金属关键先进监测技术适用性研究项目”(201309050)

作者简介: 赵宗生, 高级工程师, 主要从事环境监测工作。E-mail:envirend@aliyun.com

通信作者: 张霖琳, 博士, 教授级高级工程师, 主要从事环境监测分析技术与方法研究。E-mail:zhangll@cnemc.cn

Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry

1. 

Henan Province Key Laboratory of Heavy-metal Pollution Monitoring and Remediation, Jiyuan 459000, China

2. 

China National Environmental Monitoring Center, Beijing 100012, China

Corresponding author: ZHANG Lin-lin, zhangll@cnemc.cn

Received Date: 2018-09-19
Revised Date: 2019-03-14
Accepted Date: 2019-04-09

摘要:原子荧光光谱法(AFS)具有灵敏度高、结构简单、容易操作等优点,但目前测定土壤和沉积物中的硒等元素的标准方法所采用的消解过程繁琐,易产生干扰。沸水浴可以把土壤和水系沉积物中硒提取完全,本文根据样品中元素丰度和仪器性能,将AFS测定Se的干扰分为Cu和Pb两大类,根据实验提出在水浴消解液加入浓盐酸(不宜加入硫脲-抗坏血酸),通过增加溶液酸度和Cl-浓度,即保持样品中盐酸浓度高于23%,可抑制Cu2+还原为Cu0和Pb4+生成PbH4,有效降低了Cu的负干扰和Pb的正干扰,提高了AFS测定Se的精密度和准确度。本方法测定Se的检出限为0.008mg/kg,测试标准物质的相对标准偏差为0.5%~11%,相对误差为-16.3%~9.5%;比行业标准HJ 680—2013的检出限(0.01mg/kg)、精密度(0.79%~23.1%)和准确度等技术指标更佳。

关键词: 土壤, 水系沉积物, 水浴消解, , 原子荧光光谱法, 干扰消除

要点

(1) AFS测定土壤和沉积物中Se需控制Cu2+、Pb4+的干扰。

(2) 理论和实验表明,Cu、Pb对AFS测定Se分别产生负干扰和正干扰。

(3) 浓盐酸可抑制Cu0、PbH4的生成,消除AFS测定Se的干扰。

Interference Sources and Elimination Methods for the Determination of Selenium in Soil and Water Sediment by Atomic Fluorescence Spectrometry

ABSTRACT

BACKGROUND:

Atomic Fluorescence Spectrometry (AFS) has advantages of high sensitivity, simple structure and easy operation, but the digestion process of the standard analysis method for determination of Se in soil is cumbersome and readily produces interference.

OBJECTIVES:

To evaluate the applicability of Se determination in soil and sediment by water bath digestion/AFS, and uncover the main interference and elimination methods.

METHODS:

Based on the standard method of GB/T 22105-2008, boiling water bath of aqua regina was used to digest Se in soil and sediment. Four treatments, including Fe3+, concentrated hydrochloric acid, Fe3+with concentrated hydrochloric acid, and water bath solution, were used to eliminate the interference of Cu2+ and Pb4+.

RESULTS:

The detection limit of Se by this method was 0.008mg/kg, the relative standard deviation of the test reference materials was 0.5%-11%, and the relative error was -16.3%-9.5%, better than the detection limit (0.01mg/kg), precision (0.79%-23.1%) and accuracy of the industry standard HJ 680-2013.

CONCLUSIONS:

According to the experiment, it is proposed to add concentrated hydrochloric acid to the water bath digestion solution without adding thiourea-ascorbic acid. By increasing the acidity and Cl- concentration of the solution and keeping the concentration of hydrochloric acid in the sample higher than 23%, the reduction of Cu2+ to Cu0 and Pb4+ to form PbH4 can be inhibited. The negative interference of Cu and the positive interference of Pb are effectively reduced, and the precision and accuracy of Se measured by AFS are improved.

KEY WORDS: soil, sediment, water bath digestion, selenium, Atomic Fluorescence Spectrometry, interference elimination

HIGHLIGHTS

(1) The interferences of Cu2+ and Pb4+ need to be controlled for the determination of Se in soil and sediment by AFS.

(2) Theory and experiment indicate that Cu and Pb can result in negative and positive interference to Se determination by AFS, respectively.

(3) Concentrated hydrochloric acid inhibited the chemical formation of Cu0 and PbH4, eliminating the interference of Se determination by AFS.

本文参考文献

[1]

吕莉, 李源, 井美娇, 等. 氢化物发生-原子荧光光谱法测定三种鸡蛋中硒含量的研究[J]. 光谱学与光谱分析, 2019, 39(2): 607-611.

Lü L, Li Y, Jing M J, et al. Determination of selenium in three kinds of eggs by hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spctral Analysis, 2019, 39(2): 607-611.

[2]

李杰, 刘久臣, 汤奇峰, 等. 川西高原地区水体中硒含量及分布特征研究[J]. 岩矿测试, 2018, 37(2): 183-192.

Li J, Liu J C, Tang Q F, et al. Study of the contents and distribution of selenium in water samples from the Western Sichuan plateau and the incidence of Kaschin Beck disease[J]. Rock and Mineral Analysis, 2018, 37(2): 183-192.

[3]

李刚, 胡斯宪, 陈琳玲, 等. 原子荧光光谱分析技术的创新与发展[J]. 岩矿测试, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

Li G, Hu S X, Chen L L, et al. Innovation and development for AFS analysis[J].Rock and Mineral Analysis, 2013, 32(3): 358-376. doi: 10.3969/j.issn.0254-5357.2013.03.003

[4]

钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221.

Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soils by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221.

[5]

李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483.

Li Z Q, Hu S X, Li X Y, et al. Determination of As and Hg in survey samples of soil pollution by HG-AFS with water bath extraction[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4): 480-483.

[6]

杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487.

Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-HGAFS[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487.

[7]

刘阁, 李清昌. 氢化物原子荧光法同时测定土壤样品中砷锑[J]. 有色矿冶, 2013, 29(5): 62-64. doi: 10.3969/j.issn.1007-967X.2013.05.019

Liu G, Li Q C. HG-AFS determination of arsenic and antimony in soil[J].Non-Ferrous Mining and Metallurgy, 2013, 29(5): 62-64. doi: 10.3969/j.issn.1007-967X.2013.05.019

[8]

徐国栋, 葛建华, 贾慧娴, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定地质样品中痕量砷和汞[J]. 岩矿测试, 2010, 29(4): 391-394. doi: 10.3969/j.issn.0254-5357.2010.04.014

Xu G D, Ge J H, Jia H X, et al. Simultaneous determination of trace arsenic and mercury in geological samples by HG-AFS with water bath soaking sample preparation[J]. Rock and Mineral Analysis, 2010, 29(4): 391-394. doi: 10.3969/j.issn.0254-5357.2010.04.014

[9]

赵振平, 张怀成, 冷家峰, 等. 王水消解蒸气发生-原子荧光光谱法测定土壤中的砷、锑和汞[J]. 中国环境监测, 2004, 20(1): 44-46. doi: 10.3969/j.issn.1002-6002.2004.01.014

Zhao Z P, Zhang H C, Leng J F, et al. The method of VG-AFS with clearing by aqua regia to determine As, Sb and Hg in the soil[J].Environmental Monitoring of China, 2004, 20(1): 44-46. doi: 10.3969/j.issn.1002-6002.2004.01.014

[10]

李彩虹, 杨春霞, 赵银宝, 等. 氢化物发生-原子荧光法测定土壤中砷、汞的方法[J]. 西北农业学报, 2013, 22(7): 200-204.

Li C H, Yang C X, Zhao Y B, et al. Determination of As and Hg in soil by HG-AFS[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(7): 200-204.

[11]

李艳, 程永毅, 陈可雅, 等. 王水加辅助酸微波消解-原子荧光法测定土壤砷、硒[J]. 西南大学学报(自然科学版), 2016, 38(11): 155-160.

Li Y, Cheng Y Y, Chen K Y, et al. Determination of soil arsenic and selenium by atomic fluorescence under microwave digestion with aqua regia plus assisted acid[J]. Journal of Southwest University(Natural Science Edition), 2016, 38(11): 155-160.

[12]

苏文峰, 李刚. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒[J]. 岩矿测试, 2008, 27(2): 120-122. doi: 10.3969/j.issn.0254-5357.2008.02.010

Su W F, Li G. Determination of trace selenium in soil samples by HG-AFS with baking separation[J]. Rock and Mineral Analysis, 2008, 27(2): 120-122. doi: 10.3969/j.issn.0254-5357.2008.02.010

[13]

张锦茂, 范凡, 任萍, 等. 氢化物-原子荧光法测定岩石中痕量硒的干扰及消除[J]. 岩矿测试, 1993, 12(4): 264-267.

Zhang J M, Fan F, Ren P, et al. Elimination of interference in the determination of selenium in rocks by HG-AFS[J]. Rock and Mineral Analysis, 1993, 12(4): 264-267.

[14]

徐宝玲. 氢化物-原子荧光法测定硒时元素的干扰及其消除[J]. 分析化学, 1985, 13(1): 29-33.

Xu B L. Interference of elements and its elimination in HG-AFS determination of selenium[J]. Chinese Journal of Analytical Chemistry, 1985, 13(1): 29-33.

[15]

王丹君. 原子荧光光谱法测定土壤中的硒[J]. 理化检验(化学分册), 2014, 50(7): 914-915.

Wang D J. Determination of selenium in soil with AFS[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(7): 914-915.

[16]

陈志兵. 碱性模式氢化物发生-原子荧光光谱法测定土壤中的痕量硒[J]. 岩矿测试, 2002, 21(4): 311-314. doi: 10.3969/j.issn.0254-5357.2002.04.015

Chen Z B. Determination of trace selenium in soils by HG-AFS in alkaline mode[J]. Rock and Mineral Analysis, 2002, 21(4): 311-314. doi: 10.3969/j.issn.0254-5357.2002.04.015

[17]

邵建辉. 原子荧光法测定土壤中痕量硒元素[J]. 现代化工, 2015, 35(5): 177-178.

Shao J H. Determination of trace selenium in soil by AFS[J]. Modern Chemical Industry, 2015, 35(5): 177-178.

[18]

陶秋丽, 韩张雄, 熊英, 等. 微波消解-氢化物发生原子荧光光谱法测定粉煤灰中的硒[J]. 岩矿测试, 2013, 32(3): 445-448. doi: 10.3969/j.issn.0254-5357.2013.03.016

Tao Q L, Han Z X, Xiong Y, et al. Determination of selenium in coal ash with microwave digestion and HG-AFS[J]. Rock and Mineral Analysis, 2013, 32(3): 445-448. doi: 10.3969/j.issn.0254-5357.2013.03.016

[19]

郭小伟, 张文琴, 杨密云, 等. 氢化物-无色散原子荧光法测定地质样品中微量硒及碲[J]. 岩石矿物及测试, 1983, 2(4): 288-292.

Guo X W, Zhang W Q, Yang M Y, et al. Determination of trace amount of selenium and tellurium in geological samples by HG-AFS[J]. Acta Petrologica Mineralogica et Analytica, 1983, 2(4): 288-292.

[20]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J]. 岩矿测试, 2012, 31(6): 980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

Xue C Q, Guo M. Analysis of different valence states of selenium in geological samples by HG-AFS[J]. Rock and Mineral Analysis, 2012, 31(6): 980-984. doi: 10.3969/j.issn.0254-5357.2012.06.012

[21]

张洁, 阳国运. 树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲[J]. 岩矿测试, 2018, 37(6): 657-663.

Zhang J, Yang G Y. Determination of tungsten, molybdenum, tin, germanium, selenium and tellurium in lead-zinc ore by ICP-MS with resin exchange separation[J]. Rock and Mineral Analysis, 2018, 37(6): 657-663.

[22]

莫永涛, 王琦, 谢意南, 等. 水浴消解-原子荧光法同时测定沉积物中锑与硒[J]. 广东化工, 2015, 42(7): 167-169. doi: 10.3969/j.issn.1007-1865.2015.07.083

Mo Y T, Wang Q, Xie Y N, et al. Simultaneous determination of antimony and selenium in the sediment by nitromurlatic acid water bath diggestion-AFS[J].Guangdong Chemical Industry, 2015, 42(7): 167-169. doi: 10.3969/j.issn.1007-1865.2015.07.083

[23]

刘明钟,汤志勇,刘霁欣. 原子荧光光谱分析[M] . 北京: 化学工业出版社, 2007: 229-233.

Liu M Z,Tang Z Y,Liu J X. Analysis by AFS[M] . Beijing: Chemical Industry Press, 2007: 229-233.
[24]

张立新, 陈志勇, 周新青, 等. 氢化物发生原子荧光法在测定土壤中浸出硒、总硒的应用[J]. 中国环境监测, 2006, 22(2): 29-31. doi: 10.3969/j.issn.1002-6002.2006.02.009

Zhang L X, Chen Z Y, Zhou X Q, et al. Determination of trace selenium in soil by HG-AFS[J].Environmental Monitoring of China, 2006, 22(2): 29-31. doi: 10.3969/j.issn.1002-6002.2006.02.009

[25]

陶琛, 李春生, 初威澄, 等. 非色散原子荧光光谱法同时检测硒和铅的光源干扰校正方法研究[J]. 分析化学, 2019, 47(1): 163-168.

Tao C, Li C S, Chu W C, et al. Correction method of light source interference for simultaneous determination of selenium and lead by non-dispersive hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 163-168.

[26]

陈曦, 赵伯燕, 陈艳梅, 等. 不同介质对氢化物发生原子荧光光谱法测定硒的影响[J]. 微量元素与健康研究, 2012, 29(5): 2.

Chen X, Zhao B Y, Chen Y M, et al. Effect of different media on determination of selenium by HG-AFS[J]. Studies of Trace Elements and Health, 2012, 29(5): 2.

[27]

戴亚明. 铅的氢化物发生机理研究及钢铁中痕量铅的测定[J]. 理化检验(化学分册), 2005, 41(10): 712-717.

Dai Y M. HG-AFS determination of trace amounts of lead in iron and steel[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(10): 712-717.

[28]

李俊义,徐书绅,张渔夫. 分析化学[M] . 北京: 高等教育出版社, 1984: 602-605, 629-646.

Li J Y,Xu S S,Zhang Y F. Analytical Chemistry[M] . Beijing: Higher Education Press, 1984: 602-605, 629-646.
[29]

李倩, 张宝, 申文前, 等. 硒酸泥制备粗硒新工艺[J]. 中南大学学报(自然科学版), 2011, 42(8): 2209-2214.

Li Q, Zhang B, Shen W Q, et al. Novel technology for preparation of crude Se from selenium acid mud[J]. Journal of Central South University (Science and Technology), 2011, 42(8): 2209-2214.

[30]

李小芳, 冯小强, 章志典, 等. 羧甲基壳聚糖软模板法制备纳米硒[J]. 材料科学与工程学报, 2013, 31(6): 886-890. doi: 10.3969/j.issn.1673-2812.2013.06.023

Li X F, Feng X Q, Zhang Z D, et al. Preparation of nano-selenium using carboxymethyl chitosan as template[J].Journal of Materials Science and Engineering, 2013, 31(6): 886-890. doi: 10.3969/j.issn.1673-2812.2013.06.023

相似文献(共20条)

[1]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[2]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[3]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[4]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[7]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[8]

李文莉, 李刚. 氢化物-原子荧光法测定铜矿中微量硒和碲. 岩矿测试, 2002, (3): 223-226.

[9]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[10]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[11]

李国会. X射线荧光光谱法测定土壤和水系沉积物中的痕量铪和锆. 岩矿测试, 2001, (3): 217-219.

[12]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[13]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[14]

苏明跃, 陈广志, 王晶, 姚传刚. 水浴消解-顺序注射-氢化物发生原子荧光光谱法测定铁矿石中砷和汞. 岩矿测试, 2011, 30(2): 210-213.

[15]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[16]

周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216.

[17]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

[18]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[19]

何贵, 常继秀, 周晓润, 王禄军. 仪器残留物对氢化物发生-原子荧光光谱法测定硒和碲的影响探讨. 岩矿测试, 2013, 32(2): 229-243.

[20]

张莉娟, 刘义博, 李小莉, 徐铁民. 超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素. 岩矿测试, 2014, 33(4): 517-522.

计量
  • PDF下载量(26)
  • 文章访问量(86)
  • HTML全文浏览量(5)
  • 被引次数(0)
目录

Figures And Tables

原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳