【引用本文】 刘圣华, 杨育振, 徐胜, 等. 加速器质谱14C制样真空系统及石墨制备方法研究[J]. 岩矿测试, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
LIU Sheng-hua, YANG Yu-zhen, XU Sheng, et al. 14C Sample Preparation Vacuum Line and Graphite Preparation Method for 14C-AMS Measurement[J]. Rock and Mineral Analysis, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084

加速器质谱14C制样真空系统及石墨制备方法研究

1. 

中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061

2. 

中国冶金地质总局中南地质勘查院, 湖北 武汉 430081

3. 

Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK

收稿日期: 2018-07-12  修回日期: 2019-03-09  接受日期: 2019-04-09

基金项目: 中国地质科学院基本科研业务费项目(YYWF201517, SK201603)

作者简介: 刘圣华, 硕士, 研究实习员, 主要从事同位素质谱分析。E-mail:cuglsh@hotmail.com

通信作者: 史慧霞, 硕士, 工程师, 主要从事环境地质学研究。E-mail:917580707@qq.com

14C Sample Preparation Vacuum Line and Graphite Preparation Method for 14C-AMS Measurement

1. 

Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

2. 

Central South Geo-Exploration Institute, China Metallurgical Geology Bureau, Wuhan 430081, China

3. 

Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK

Corresponding author: SHI Hui-xia, 917580707@qq.com

Received Date: 2018-07-12
Revised Date: 2019-03-09
Accepted Date: 2019-04-09

摘要:14C制样真空系统和石墨制备方法是高精度低本底14C加速器质谱(AMS)测量的关键,而碳污染、石墨产率不稳定和同位素分馏等问题是限制该技术发展的主要难题。为了降低传统在线还原法对制样系统长时间静态真空的要求和解决Zn-TiH2/Fe火焰封管法中不可控的CH4等问题,提高石墨合成的稳定性和控制本底,本文建立了基于Zn/Fe火焰封管法的14C制样真空系统和石墨制备方法。通过比较Zn/Fe在线法和Zn/Fe火焰封管法对石墨束流性能以及标样的影响,发现Zn/Fe火焰封管法相较Zn/Fe在线法能明显克服大气泄漏问题,改善化学流程本底(0.24~0.32pMC),提高方法测年上限(47000~48000ya),同时石墨束流输出稳定。进一步利用标准样品和本底样品评估了Zn/Fe火焰封管法的技术特点,实验结果表明该法的精密度好(RSD=0.35%,n=20,标样OXⅡ),准确度高(IAEA系列标样的测定值与认定值线性拟合方程y=0.9969x+0.0013,R2=1),实验本底低(无机碳46296±271ya和有机碳48341±356ya)。因此,该石墨样品制备真空系统及Zn/Fe火焰封管法技术具有石墨品质优、化学流程本底低、准确度和精密度高等特点,满足高精度低本底14C-AMS测定石墨样品制备要求。

关键词: 14C加速器质谱, 石墨制样, Zn/Fe在线法, Zn/Fe火焰封管法

要点

(1) Zn/Fe火焰封管法在克服大气泄漏和降低本底方面优于Zn/Fe在线法。

(2) 建立了特色的Zn/Fe火焰封管法14C制样真空系统及石墨制靶方法。

(3) Zn/Fe火焰封管法的测年上限为47000~48000ya,相对标准偏差为0.35%。

14C Sample Preparation Vacuum Line and Graphite Preparation Method for 14C-AMS Measurement

ABSTRACT

BACKGROUND:

The technical keys of high-quality 14C-Accelerator Mass Spectrometry (AMS) analysis with low-background is the sample preparation method and the vacuum line rigs. However, the development of the graphite target preparation method is impeded by extraneous source carbon contamination, unsteady graphitization yield and isotope fractionation.

OBJECTIVES:

To reduce the requirement of the traditional on-line method on the long-term statical vacuum performance of the sample preparation line, solve the problem of CH4 produced in the Zn-TiH2/Fe sealed tube method, while improving the stability of graphitization, and control carbon contamination.

METHODS:

14C sample preparation vacuum system and graphite preparation method based on Zn/Fe flame sealing method was established. The effects on the beam current and values of graphite (prepared from OXⅡ and blank samples) between the Zn/Fe on-line method and the Zn/Fe flame sealed tube method were compared. The precision of the Zn/Fe flame sealed tube method was checked with OXⅡ as the unknown sample. Two 'in-house' blank standards IHEG-Cal and IHEG-Coal were used to evaluate the chemical procedure background of both methods. The other 'known-value' reference materials of IAEA C2, C3, C5, C7, C8 and C9 were used to validate the accuracy of the Zn/Fe flame sealed tube method.

RESULTS:

Zn/Fe on-line method can obviously overcome the air leakage, which yields a lower chemical process background (0.24-0.32pMC) and higher ultimate radiocarbon age (47000-48000ya) observed in Zn/Fe flame sealed tube method with long-term stable beam current output. It was demonstrated that Zn/Fe sealed tube method was more suitable for graphite target preparation than Zn/Fe on-line method. The results illustrated that the Zn/Fe flame sealed tube method had good reproducibility (RSD=0.35%, n=20, OXⅡ), and high accuracy for a variety of natural samples ranging from dead carbon samples to modern carbon samples (linear fitting formula y=0.9969x+0.0013, R2=1) with a low background (radiocarbon age of blank 46296±271ya for inorganic carbon and 48341±356ya for organic carbon).

CONCLUSIONS:

The graphite sample preparation vacuum system and the Zn/Fe flame sealing method have the characteristics of excellent graphite quality, low chemical procedure background, high accuracy and high precision, and meet the sample preparation requirements of high-precision and low-background 14C-AMS determination for graphite.

KEY WORDS: 14C-Accelerator Mass Spectrometry, graphite target preparation, Zn/Fe on-line method, Zn/Fe flame sealed tube method

HIGHLIGHTS

(1) Compared with Zn/Fe online method, Zn/Fe sealed tube method was more suitable in overcoming air leakage and low background.

(2) A novel sample preparation vacuum system and graphitization method based on Zn/Fe flame sealed tube method were developed in this study.

(3) Higher ultimate radiocarbon age (47000-48000ya) and good precision (RSD=0.35%) have been achieved by Zn/Fe flame sealed tube method.

本文参考文献

[1]

Chung I M, Kim S H. Biological and biomedical 14C-accelerator mass spectrometry and graphitization of carbonaceous samples[J].Analyst, 2013, 138(12): 3347-3355. doi: 10.1039/c3an00077j

[2]

Kutschera W. Applications of accelerator mass spectrometry[J]. International Journal of Mass Spectrometry, 2013, 349-350(1): 203-218.

[3]

Fink D. AMS-11 in Rome, 2008:Past achievements, current and future trends[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8): 1334-1342. doi: 10.1016/j.nimb.2009.10.167

[4]

管永精, 王慧娟, 鞠志萍, 等. 加速器质谱技术及其在地球科学中的应用[J]. 岩矿测试, 2005, 24(4): 41-47.

Guan Y J, Wang H J, Ju Z P, et al. Acclerator mass spectrometry and its applications in geosciences[J]. Rock and Mineral Analysis, 2005, 24(4): 41-47.

[5]

Synal H-A. Developments in accelerator mass spectrometry[J].International Journal of Mass Spectrometry, 2013, 349-350: 192-202. doi: 10.1016/j.ijms.2013.05.008

[6]

Vogel J S, Southon J R, Nelson D E, et al. Performance of catalytically condensed carbon for use in accelerator mass spectrometry[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2): 289-293. doi: 10.1016/0168-583X(84)90529-9

[7]

Jull A, Donahue D, Hatheway A, et al. Production of graphite targets by deposition from CO/H2 for precision accelerator 14C measurements[J].Radiocarbon, 1986, 28(2A): 191-197. doi: 10.1017/S0033822200007268

[8]

Slota P, Jull A T, Linick T, et al. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO[J].Radiocarbon, 1987, 29(2): 303-306. doi: 10.1017/S0033822200056988

[9]

Ertunc T, Xu S, Bryant C L, et al. Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory[J].Radiocarbon, 2005, 47(3): 453-464. doi: 10.1017/S0033822200035232

[10]

Xu X, Trumbore S E, Zheng S, et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets:Reducing background and attaining high precision[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1): 320-329. doi: 10.1016/j.nimb.2007.01.175

[11]

Khosh M S, Xu X, Trumbore S E, et al. Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8): 927-930. doi: 10.1016/j.nimb.2009.10.066

[12]

Macario K D, Alves E Q, Oliveira F M, et al. Graphitization reaction via zinc reduction:How low can you go?[J]. International Journal of Mass Spectrometry, 2016, 410(1): 47-51.

[13]

Ding P, Shen C D, Yi W X, et al. Small-mass graphite preparation for AMS 14C measurements performed at GIGCAS, China[J].Radiocarbon, 2017, 59(3): 705-711. doi: 10.1017/RDC.2017.38

[14]

Cheng P, Zhou W, Burr G S, et al. Authentication of Chinese vintage liquors using bomb-pulse 14C[J].Scientific Reports, 2016, 6: 38381-38388. doi: 10.1038/srep38381

[15]

D'Elia M, Calcagnile L, Quarta G, et al. Sample preparation and blank values at the AMS radiocarbon facility of the University of Lecce[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224: 278-283. doi: 10.1016/j.nimb.2004.04.056

[16]

Marzaioli F, Borriello G, Passariello I, et al. Zinc reduction as an alternative method for AMS radiocarbon dating:Process optimization at CIRCE[J].Radiocarbon, 2008, 50(1): 139-149. doi: 10.1017/S0033822200043423

[17]

Orsovszki G, Rinyu L. Flame-sealed tube graphitization using zinc as the sole reduction agent:Precision improvement of environMICADAS 14C measurements on graphite targets[J].Radiocarbon, 2015, 57(5): 979-990. doi: 10.2458/azu_rc.57.18193

[18]

Xu X, Gao P, Salamanca E G, et al. Ultra small-mass graphitization by sealed tube zinc reduction method for AMS 14C measurements[J]. Radiocarbon, 2013, 55(2-3): 608-616.

[19]

Krajcar Bronić I, Horvatinčić N, Sironić A, et al. A new graphite preparation line for AMS 14C dating in the Zagreb Radiocarbon Laboratory[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8): 943-946. doi: 10.1016/j.nimb.2009.10.070

[20]

Wacker L, Němec M, Bourquin J, et al. A revolutionary graph-itisation system:Fully automated, compact and simple[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7): 931-934.

[21]

Zoppi U, Crye J, Song Q, et al. Performance evaluation of the new AMS system at Accium BioSciences[J]. Radiocarbon, 2016, 49(1): 171-180.

[22]

庞义俊, 何明, 杨旭冉, 等. 基于小型单极加速器质谱测量14C的样品制备技术研究[J]. 原子能科学技术, 2017, 51(10): 1866-1873. doi: 10.7538/yzk.2017.youxian.0012

Pang Y J, He M, Yang X R, et al. 14C sample preparation for compact single stage AMS[J].Atomic Energy Science and Technology, 2017, 51(10): 1866-1873. doi: 10.7538/yzk.2017.youxian.0012

[23]

Yuan S, Wu X, Gao S, et al. The CO2 preparation system for AMS dating at Peking University[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2000, 172(1-4): 458-461. doi: 10.1016/S0168-583X(00)00362-1

[24]

Aerts-Bijma A T, Meijer H A J, van Der Plicht J, et al. AMS sample handling in Groningen[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1-4): 221-225. doi: 10.1016/S0168-583X(96)00672-6

相似文献(共20条)

[1]

曾惠芳, 戢朝玉, 袁玄晖. 等离子体直读光谱法分析以Pb、Zn、Cu、Fe为基体的硫化矿物的研究. 岩矿测试, 1986, (4): 269-274.

[2]

管永精, 王慧娟, 何明, 董克君, 林敏, 鞠志萍, 汪越, 武绍勇, 姜山. 加速器质谱技术及其在地球科学中的应用. 岩矿测试, 2005, (4): 277-283.

[3]

姜山, 董克君, 何明. 超灵敏加速器质谱技术进展及应用. 岩矿测试, 2012, 31(1): 7-23.

[4]

周炼, 蒋菘生. 加速器质谱计测定地下水中的^31Cl及其应用. 岩矿测试, 1999, (2): 92-96.

[5]

张丽, 周卫健, 常宏, 赵国庆, 宋少华, 武振坤. 暴露测年样品中26Al和10Be分离及其加速器质谱测定. 岩矿测试, 2012, 31(1): 83-89.

[6]

梁汉文. 软锰矿中MnO2、MnO及Fe2O3的微量分析法. 岩矿测试, 1986, (3): 227-229.

[7]

曾江萍, 吴磊, 李小莉, 王娜, 张莉娟. 较低稀释比熔融制样X射线荧光光谱法分析铬铁矿. 岩矿测试, 2013, 32(6): 915-919.

[8]

刘江斌, 余宇, 段九存, 赵伟华, 李瑞仙, 黄兴华, 和振云, 党亮. 熔融制样X射线荧光光谱法测定锑矿石中的锑和14种微量元素. 岩矿测试, 2014, 33(6): 828-833.

[9]

周文勤. 加速器质谱分析超痕量铍同位素研究深海沉积物沉积速率和多金属结核生长速率 . 岩矿测试, 1997, (2): 109-117.

[10]

侯书恩, 常诚. 雾化进样石墨炉原子吸收光谱法的研究:I.直接雾化进样装置及其性能. 岩矿测试, 1993, (1): 6-10.

[11]

林立, 姚继军, 杨仁康, 孙继红. 悬浮进样-石墨炉原子吸收光谱法直接测定化妆品中的铅. 岩矿测试, 2013, 32(4): 644-648.

[12]

刘玉纯, 林庆文, 马玲, 梁述廷. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化. 岩矿测试, 2018, 37(6): 671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014

[13]

陈明德, 刘玉茹, 姚亚东. 新显色体系的研究—Fe(Ⅱ)-3,5-Cl2-PADAT-SDBS体系. 岩矿测试, 1986, (3): 234-240.

[14]

毕海超, 赵俊梅, 董建芳, 李义. Fe-ZSM-5分子筛催化降解染料废水的研究. 岩矿测试, 2013, 32(1): 119-123.

[15]

王毅民. X荧光分析地质样品时的制样方法. 岩矿测试, 1988, (1): 77-80.

[16]

杨学清, 应启和, 饶文波, 王华, 冯玉梅, 苏治国, 涂林玲, 钟云. 常规碳十四制样系统及其优化. 岩矿测试, 2007, 26(2): 129-132.

[17]

杨勇, 杨琴, 宋俊磊. 电子探针定量分析测定FeO和Fe2O3含量常用方法的评定. 岩矿测试, 2007, 26(3): 213-218.

[18]

葛艳梅. 王水溶样-火焰原子吸收光谱法直接测定高品位金矿石的金量. 岩矿测试, 2014, 33(4): 491-496.

[19]

刘明, 谢继聪, 林守麟. 在线液-液萃取微型万用分相器的设计和应用 Ⅰ.连续流动萃取石墨炉原子吸收测环境水中镉和不同价态的铬. 岩矿测试, 1997, (4): 245-249.

[20]

赵泰, ReneNowka. 新技术应用——直接固体进样石墨炉分析. 岩矿测试, 2003, (1): 79-80.

计量
  • PDF下载量(14)
  • 文章访问量(103)
  • HTML全文浏览量(41)
  • 被引次数(0)
目录

Figures And Tables

加速器质谱14C制样真空系统及石墨制备方法研究

刘圣华, 杨育振, 徐胜, 张慧, 蒋雅欣, 史慧霞