【引用本文】 陈保冬, 张莘, 伍松林, 等. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 2019, 38(1): 1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083
CHEN Bao-dong, ZHANG Xin, WU Song-lin, et al. The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications[J]. Rock and Mineral Analysis, 2019, 38(1): 1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083

丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用

1. 

中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085

2. 

中国科学院大学, 北京 100049

3. 

中国地质大学(北京), 北京 100083

收稿日期: 2018-07-11  修回日期: 2018-09-03  接受日期: 2018-09-10

基金项目: 国家自然科学基金面上项目(21677164,41471219);“十三五”国家重点研发计划项目(2016YFD0800404)

作者简介: 陈保冬, 博士, 研究员, 研究方向为土壤生态学。E-mail:bdchen@rcees.ac.cn

The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications

1. 

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2. 

University of Chinese Academy of Sciences, Beijing 100049, China

3. 

China University of Geosciences(Beijing), Beijing 100083, China

Received Date: 2018-07-11
Revised Date: 2018-09-03
Accepted Date: 2018-09-10

摘要:丛枝菌根真菌(AMF)是在自然和农业生态系统中广泛存在的一类专性共生土壤微生物,能够与80%左右的陆地植物建立共生关系。AMF从宿主植物获取碳水化合物以维系自身生长;作为回报,AMF能够帮助植物从土壤中吸收矿质养分和水分。很多研究表明,AM共生体系对于植物适应各种逆境胁迫(如贫瘠、干旱、环境污染等)具有重要作用。在土壤重金属污染情况下,AMF能够通过多种途径影响植物对重金属的吸收、累积和解毒过程,并对植物产生保护效应。本文围绕AM对土壤-植物系统中重金属迁移、转化和累积过程的影响机制,系统评述了金属元素种类及污染程度、宿主植物和AMF种类,以及土壤理化性质等因素对AM植物吸收累积重金属的影响,并从AMF对土壤-植物系统中重金属行为的直接作用(包括菌丝吸收和固持,以及改变根际重金属形态等),及AMF改善植物矿质营养促进植物生长从而间接增强植物重金属耐性两方面讨论了AM增强植物重金属耐性的机理,系统总结了相关研究领域的前沿动态。最后,对菌根技术在农田和矿区重金属污染土壤生物修复中的应用前景进行了展望。

关键词: 丛枝菌根真菌, 重金属, 耐性, 生物修复

要点

(1) 介绍了AM真菌对植物吸收累积重金属的调控作用及其影响因素。

(2) 从AM真菌直接和间接影响土壤植物系统中重金属迁移转化过程两方面总结了AM真菌增强植物重金属耐性的机制。

(3) 展望了AM真菌在重金属污染土壤生物修复中的可能应用。

The Role of Arbuscular Mycorrhizal Fungi in Heavy Metal Translocation, Transformation and Accumulation in the Soil-Plant Continuum: Underlying Mechanisms and Ecological Implications

ABSTRACT

BACKGROUND:

Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi in natural and agricultural ecosystems. They are obligate symbionts that can form symbiotic association with the majority of terrestrial plants. AMF obtains carbohydrates from host plants to maintain its own growth; in return, AMF can help plants absorb mineral nutrients and water from the soil. Many studies demonstrate the importance of AM symbiosis in plant adaptation to various environmental stresses, including nutrient deficiency, drought stress and heavy metal (HM) contamination.

OBJECTIVES:

To summarize the underlying mechanisms for the enhanced plant tolerance to HMs by AM symbiosis, and to overview the possible involvements of AMF in HM translocation, transformation and accumulation in the soil-plant continuum.

METHODS:

A literature review was conducted and a total of 189 publications were identified, from 1984 to 2018. Direct and indirect involvements of AMF in metal uptake and accumulation by host plants have been overviewed. Key factors influencing the mycorrhizal effects have been fully discussed.

RESULTS:

AMF can take an active part in HM uptake, accumulation and detoxification, resulting in protective effects on host plants against HMs. On one hand, AMF can directly immobilize HMs, influence bioavailability of HMs, and consequently influence HM uptake and accumulation by host plants. On the other hand, AMF can also indirectly influence plant tolerance to HM by improving plant mineral nutrition and promoting plant growth. The mycorrhizal effects can be influenced largely by HM type and contamination level, plant and AM fungal species, and soil chemo-physical properties.

CONCLUSIONS:

AMF can essentially influence plant metal uptake and tolerance, thus can be used for ecological restoration of HM contaminated soils. Future research should go deep into the stress physiology of AMF. The effectiveness of AMF in bioremediation is also expected to be tested under field conditions.

KEY WORDS: arbuscular mycorrhizal fungi, heavy metal, tolerance, bioremediation

HIGHLIGHTS

(1) An overview of the effects of arbuscular mycorrhizal fungi (AMF) on plant metal uptake and accumulation, and the factors influencing AM functions was performed.

(2) From the aspects of AMF directly and indirectly affecting the process of heavy metal (HM) migration and transformation in soil plant systems, the mechanism of AMF enhancing plant heavy metal tolerance was summarized.

(3) Potential application of AMF for bioremediation of HM contaminated soils was proposed.

本文参考文献

[1]

崔玉静, 张旭红, 朱永官, 等. 体外模拟法在土壤-人途径重金属污染的健康风险评价中的应用[J]. 环境与健康杂志, 2007, 24(9): 672-674. doi: 10.3969/j.issn.1001-5914.2007.09.006

Cui Y J, Zhang X H, Zhu Y G, et al. Health risk assessment of soil-oral exposure of heavy metal contaminated soil by in vitro method[J].Journal of Environment and Health, 2007, 24(9): 672-674. doi: 10.3969/j.issn.1001-5914.2007.09.006

[2]

赵永红, 张涛, 成先雄, 等. 矿山废弃地植物修复中微生物的协同作用[J]. 中国矿业, 2008, (10): 46-48. doi: 10.3969/j.issn.1004-4051.2008.10.014

Zhao Y H, Zhang T, Cheng X X, et al. Cooperation effect of microbe in plant remediation of mining wasteland[J].China Mining Magazine, 2008, (10): 46-48. doi: 10.3969/j.issn.1004-4051.2008.10.014

[3]

周宝利, 陈玉成. 植物修复的促进措施及根际微生物的作用[J]. 环境保护科学, 2006, (3): 39-42. doi: 10.3969/j.issn.1004-6216.2006.03.014

Zhou B L, Chen Y C. Enhancing approaches of phytoremediation and role of rhizomicrobes in remediation processes[J].Environmental Protection Science, 2006, (3): 39-42. doi: 10.3969/j.issn.1004-6216.2006.03.014

[4] Smith S E,Read D. Mycorrhizal Symbiosis[M] . San Diego: Academic Press, 2008: 13-15.
[5]

Garg N, Chandel S. Arbuscular mycorrhizal networks:Process and functions.A review[J].Agronomy for Sustainable Development, 2010, 30: 581-599. doi: 10.1051/agro/2009054

[6]

Zarei M, Hempel S, Wubet T, et al. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination[J].Environmental Pollution, 2010, 158(8): 2757-2765. doi: 10.1016/j.envpol.2010.04.017

[7]

Whitfield L, Richards A J, Rimmer D L, et al. Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in Northern England[J].Mycorrhiza, 2004, 14(1): 55-62. doi: 10.1007/s00572-003-0268-z

[8]

Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J].Critical Reviews in Environmental Science and Technology, 2012, 42(7): 741-775. doi: 10.1080/10643389.2010.528518

[9]

Wang F. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration:Mechanisms and applications[J].Critical Reviews in Environmental Science and Technology, 2017, 47(20): 1901-1957. doi: 10.1080/10643389.2017.1400853

[10]

Chen B D, Tang X Y, Zhu Y G, et al. Metal concen-trations and mycorrhizal status of plants colonizing copper mine tailings:Potential for revegetation[J]. Science in China Series C-Life Sciences, 2005, 48(Supplement 1): 156-164.

[11]

伍松林, 张莘, 陈保冬, 等. 丛枝菌根对土壤-植物系统中重金属迁移转化的影响[J]. 生态毒理学报, 2013, 8(6): 847-856.

Wu S L, Zhang X, Chen B D, et al. Effects of arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum[J]. Asian Journal of Ecotoxicology, 2013, 8(6): 847-856.

[12]

Ortega-Larrocea M D, Xoconostle-Cazares B, Maldonado-Mendoza I E, et al. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico[J].Environmental Pollution, 2010, 158(5): 1922-1931. doi: 10.1016/j.envpol.2009.10.034

[13]

Regvar M, Likar M, Piltaver A, et al. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site:The potential of screening in a model phytostabilisation study[J].Plant and Soil, 2010, 330(1/2): 345-356.

[14]

Long L K, Yao Q, Guo J, et al. Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils[J].European Journal of Soil Biology, 2010, 46(5): 288-294. doi: 10.1016/j.ejsobi.2010.06.003

[15]

Chen B D, Liu Y, Shen H, et al. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.)[J].Mycorrhiza, 2004, 14(6): 347-354. doi: 10.1007/s00572-003-0281-2

[16]

Chen B D, Li X L, Tao H Q, et al. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc[J].Chemosphere, 2003, 50(6): 839-846. doi: 10.1016/S0045-6535(02)00228-X

[17]

Andrade S A L, Abreu C A, de Abreu M F, et al. Influence of lead additions on arbuscular mycorrhiza and rhizobium symbioses under soybean plants[J].Applied Soil Ecology, 2004, 26(2): 123-131. doi: 10.1016/j.apsoil.2003.11.002

[18]

Chen B D, Shen H, Li X L, et al. Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc[J].Plant and Soil, 2004, 261(1/2): 219-229. doi: 10.1023/B:PLSO.0000035538.09222.ff

[19]

张淑彬.土壤中重金属镉铅对丛枝菌根真菌生长的直接影响研究[D].北京: 中国农业大学出版社, 2005.

Zhang S B.Direct Effects of Soil Cadmium and Lead on Growth of Arbuscular Mycorrhizal Fungi[D]. Beijing: China Agricultural University Press, 2005.

[20]

Zhang S, Feng G, Li X L, et al. The direct effect of cadmium in soil on growth of arbuscular mycorrhizal fungi Glomus mosseae[J]. Mygosystema, 2005, 24(4): 576-581.

[21]

Chen X, Wu C H, Tang J J, et al. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J].Chemosphere, 2005, 60(5): 665-671. doi: 10.1016/j.chemosphere.2005.01.029

[22]

Leyval C, Turnau K, Haselwandter K, et al. Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological, ecological and applied aspects[J].Mycorrhiza, 1997, 7(3): 139-153. doi: 10.1007/s005720050174

[23]

Chen B D, Zhu Y G, Duan J, et al. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings[J].Environmental Pollution, 2007, 147(2): 374-380. doi: 10.1016/j.envpol.2006.04.027

[24]

Dong Y, Zhu Y G, Smith F A, et al. Arbuscular mycorr-hiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil[J].Environmental Pollution, 2008, 155(1): 174-181. doi: 10.1016/j.envpol.2007.10.023

[25]

Zhang X, Ren B H, Wu S L, et al. Arbuscular mycorr-hizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil[J].Chemosphere, 2015, 119: 224-230. doi: 10.1016/j.chemosphere.2014.06.042

[26]

Zhang X, Ren B H, Wu S L, et al. Rhizophagus irregu-laris influences As and P uptake by alfafaand the neighboring non-host pepperweed growing in an As-contaminated soil[J].Journal of Environmental Sciences, 2018, 67: 36-44. doi: 10.1016/j.jes.2017.07.005

[27]

Zhang X, Wu S L, Ren B H, et al. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains[J].Mycorrhiza, 2016, 26: 299-309. doi: 10.1007/s00572-015-0669-9

[28]

Wu S L, Hu Y J, Zhang X, et al. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism[J].Environmental and Experimental Botany, 2018, 147: 43-52. doi: 10.1016/j.envexpbot.2017.11.010

[29]

Wu S L, Chen B D, Sun Y Q, et al. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(Ⅵ)-contaminated soils[J].Environmental Toxicology and Chemistry, 2014, 33: 2105-2113. doi: 10.1002/etc.v33.9

[30]

Chen B D, Zhu Y G, Zhang X H, et al. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil[J].Environmental Science and Pollution Research, 2005, 12(6): 325-331. doi: 10.1065/espr2005.06.267

[31]

Davies F T, Puryear J D, Newton R J, et al. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus)[J].Journal of Plant Physiology, 2001, 158(6): 777-786. doi: 10.1078/0176-1617-00311

[32]

Li H Y, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J].New Phytologist, 2006, 172(3): 536-543. doi: 10.1111/nph.2006.172.issue-3

[33]

Feng G, Song Y C, Li X L, et al. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil[J].Applied Soil Ecology, 2003, 22(2): 139-148. doi: 10.1016/S0929-1393(02)00133-6

[34]

Yao Q, Li X L, Ai W D, et al. Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links[J].European Journal of Soil Biology, 2003, 39(1): 47-54. doi: 10.1016/S1164-5563(02)00008-0

[35]

Chen B D, Roos P, Borggaard O K, et al. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer[J]. New Phytologist, 2005, 165(2): 591-598.

[36]

Chen B D, Xiao X Y, Zhu Y G, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa linn[J].Science of the Total Environment, 2007, 379(2-3): 226-234. doi: 10.1016/j.scitotenv.2006.07.038

[37]

Chen B D, Jakobsen I, Roos P, et al. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil[J]. Plant and Soil, 2005, 275(1/2): 349-359.

[38]

Bissonnette L, St-Arnaud M, Labrecque M, et al. Phytoextrac-tion of heavy metals by two salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J].Plant and Soil, 2010, 332(1-2): 55-67. doi: 10.1007/s11104-009-0273-x

[39]

Yu X Z, Cheng J M, Wong M H, et al. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biology & Biochemistry, 2005, 37(2): 195-201.

[40]

刘灵芝, 李培军, 巩宗强, 等. 矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响[J]. 微生物学通报, 2011, 38(4): 575-582.

Liu L Z, Li P J, Gong Z Q, et al. Effects of arbuscular mycorrhizal fungi isolated from mining area on the enhancement of Cd uptake in marigold plants[J]. Microbiology China, 2011, 38(4): 575-582.

[41]

Arriagada C, Aranda E, Sampedro I, et al. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus[J].Chemosphere, 2009, 77(2): 273-278. doi: 10.1016/j.chemosphere.2009.07.042

[42]

Citterio S, Prato N, Fumagalli P, et al. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.[J].Chemosphere, 2005, 59(1): 21-29. doi: 10.1016/j.chemosphere.2004.10.009

[43]

Li J L, Sun Y Q, Jiang X, et al. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning[J].Ecotoxicology and Environmental Safety, 2018, 157: 235-243. doi: 10.1016/j.ecoenv.2018.03.073

[44]

Findeneg G, Broda E. Mechanism of uptake of trace ele-ments by plant roots[J].Nature, 1965, 208: 196-197. doi: 10.1038/208196a0

[45]

Dalton F N. Dual pattern of potassium-transport in plant-cells-A physical artifact of a single uptake mechanism[J]. Journal of Experimental Botany, 1984, 35(161): 1723-1732.

[46]

Leitenmaier B, Witt A, Witzke A, et al. Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens[J].Biochimica et Biophysica Acta-Biomembranes, 2011, 1808(10): 2591-2599. doi: 10.1016/j.bbamem.2011.05.010

[47]

Zhao F J, McGrath S P, Meharg A A, et al. Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J].Annual Review of Plant Biology, 2010, 61: 535-559. doi: 10.1146/annurev-arplant-042809-112152

[48]

Kaszycki P, Gabrys H, Appenroth K J, et al. Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza[J].Plant Cell and Environment, 2005, 28(2): 260-268. doi: 10.1111/pce.2005.28.issue-2

[49]

Zhu Y G, Smolders E. Plant uptake of radiocaesium:A review of mechanisms, regulation and application[J].Journal of Experimental Botany, 2000, 51(351): 1635-1645. doi: 10.1093/jexbot/51.351.1635

[50]

Cavagnaro T R. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations:A review[J]. Plant and Soil, 2008, 304(1/2): 315-325.

[51]

Carvalho L M, Cacador I, Martins-Loucao M A, et al. Arbus-cular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L[J]. Plant and Soil, 2006, 285(1/2): 161-169.

[52]

Wang F Y, Lin X G, Yin R, et al. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil[J].Pedobiologia, 2007, 51(2): 99-109. doi: 10.1016/j.pedobi.2007.02.003

[53]

Latef A. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.)[J].Mycorrhiza, 2011, 21(6): 495-503. doi: 10.1007/s00572-010-0360-0

[54]

Xu P L, Christie P, Liu Y, et al. The arbuscular mycorr-hizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake[J].Environmental Pollution, 2008, 156(1): 215-220. doi: 10.1016/j.envpol.2008.01.003

[55]

Yu Y, Zhang S Z, Huang H L, et al. Arsenic accumu-lation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae[J].Journal of Agricultural and Food Chemistry, 2009, 57(9): 3695-3701. doi: 10.1021/jf900107y

[56]

Eleiwa M M E. Effect of different concentrations of zinc or cadmium on Vigna sinensis plants in presence or absence of arbuscular mycorrhizal fungi and rhizobia[J]. Egyptian Journal of Soil Science, 2004, 44(3): 385-405.

[57]

Hutchinson J J, Young S D, Black C R, et al. Deter-mining uptake of radio-labile soil cadmium by arbuscular mycorrhizal hyphae using isotopic dilution in a compartmented-pot system[J].New Phytologist, 2004, 164(3): 477-484. doi: 10.1111/j.1469-8137.2004.01206.x

[58]

Janouskova M, Vosatka M, Rossi L, et al. Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types[J].Applied Soil Ecology, 2007, 35(3): 502-510. doi: 10.1016/j.apsoil.2006.10.002

[59]

Hovsepyan A, Greipsson S. Effect of arbuscular mycorr-hizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil[J].International Journal of Phytoremediation, 2004, 6(4): 305-321. doi: 10.1080/16226510490888820

[60]

Wu F Y, Ye Z H, Wong M H, et al. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L[J].Chemosphere, 2009, 76(9): 1258-1264. doi: 10.1016/j.chemosphere.2009.05.020

[61]

Vinichuk M, Martensson A, Ericsson T, et al. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils[J].Journal of Environmental Radioactivity, 2013, 115: 151-156. doi: 10.1016/j.jenvrad.2012.08.004

[62]

de Souza L A, de Andrade S A L, de Souza S C R, et al. Tolerance and phytoremediation potential of Stizolobium aterrimum associated to the arbuscular mycorrhizal fungi Glomus etunicatum in lead-contaminated soil[J].Revista Brasileira De Ciencia Do Solo, 2011, 35(4): 1441-1451. doi: 10.1590/S0100-06832011000400038

[63]

Liu L, Zhang Y, Li P, et al. Effect of arbuscular mycorr-hizal fungi isolated from mining area on growth and Cd uptake of Tagetes erecta L.[J].Acta Pedologica Sinica, 2012, 49(1): 43-49.

[64]

Zhong W I, Li J T, Chen Y T, et al. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi[J].Journal of Environmental Monitoring, 2012, 14(9): 2497-2504. doi: 10.1039/c2em30333g

[65]

Garg N, Kaur H. Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi[J]. Journal of Plant Nutrition, 2013, 36(1): 67-90.

[66]

Shen H, Christie P, Li X, et al. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium[J]. Environmental Geochemistry and Health, 2006, 28(1/2): 111-119.

[67]

Chen B D, Zhu Y G, Smith F A, et al. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J].Chemosphere, 2006, 62(9): 1464-1473. doi: 10.1016/j.chemosphere.2005.06.008

[68]

Liu Y, Christie P, Zhang J L, et al. Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus[J].Environmental and Experimental Botany, 2009, 66(3): 435-441. doi: 10.1016/j.envexpbot.2009.03.002

[69]

Vogel-Mikus K, Pongrac P, Kump P, et al. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake[J].Environmental Pollution, 2006, 139(2): 362-371. doi: 10.1016/j.envpol.2005.05.005

[70]

Audet P, Charest C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation:Meta-analytical and conceptual perspectives[J].Environmental Pollution, 2007, 147(3): 609-614. doi: 10.1016/j.envpol.2006.10.006

[71]

Janouskova M, Pavlikova D, Macek T, et al. Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene[J].Applied Soil Ecology, 2005, 29(3): 209-214. doi: 10.1016/j.apsoil.2004.12.006

[72]

Biro I, Nemeth T, Takacs T, et al. Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils[J]. Communications in Soil Science and Plant Analysis, 2009, 40(1/2/3/4/5/6): 227-239.

[73]

Yu Y, Zhang S Z, Huang H L, et al. Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi[J].Communications in Soil Science and Plant Analysis, 2010, 41(6): 735-743. doi: 10.1080/00103620903563964

[74]

刘茵, 孔凡美, 冯固, 等. 丛枝菌根真菌对紫羊茅镉吸收与分配的影响[J]. 环境科学学报, 2004, 24(6): 1122-1127. doi: 10.3321/j.issn:0253-2468.2004.06.029

Liu Y, Kong F, Feng G, et al. Effect of arbuscular mycorrhizal fungi on cadmium uptake and translocation in Festuca rubra plant[J].Acta Scientiae Circumstantiae, 2004, 24(6): 1122-1127. doi: 10.3321/j.issn:0253-2468.2004.06.029

[75]

de Andrade S A L, Jorge R A, da Silveira A P D, et al. Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi[J].Scientia Agricola, 2005, 62(4): 389-394. doi: 10.1590/S0103-90162005000400013

[76]

Hua J F, Lin X G, Yin R, et al. Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.)[J].Journal of Environmental Sciences-China, 2009, 21(9): 1214-1220. doi: 10.1016/S1001-0742(08)62406-7

[77]

Sudova R, Vosatka M. Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants[J]. Plant and Soil, 2007, 296(1/2): 77-83.

[78]

Weissenhorn I, Glashoff A, Leyval C, et al. Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils[J].Plant and Soil, 1994, 167(2): 189-196. doi: 10.1007/BF00007944

[79]

Tullio M, Pierandrei F, Salerno A, et al. Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil[J]. Biology and Fertility of Soils, 2003, 37(4): 211-214.

[80]

于永光, 赵斌. 不同pH水平下两种菌根真菌对紫云英生长的影响及其相互作用[J]. 菌物学报, 2008, 27(2): 209-216.

Yu Y G, Zhao B. The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L. at different pH level[J]. Mycosystema, 2008, 27(2): 209-216.

[81]

冯海艳, 刘茵, 冯固, 等. 接种AM真菌对黑麦草吸收和分配Cd的影响[J]. 农业环境科学学报, 2005, 24(3): 426-431. doi: 10.3321/j.issn:1672-2043.2005.03.003

Feng H Y, Liu Y, Feng G, et al. Effect of arbuscular mycorrhizal fungi on uptake and distribution of cadmium in Lolium L.[J].Journal of Agro-environment Science, 2005, 24(3): 426-431. doi: 10.3321/j.issn:1672-2043.2005.03.003

[82]

Coughlan A P, Dalpe Y, Lapointe L, et al. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests[J].Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2000, 30(10): 1543-1554. doi: 10.1139/x00-090

[83]

Gao X P, Tenuta M, Flaten D N, et al. Cadmium concen-tration in flax colonized by mycorrhizal fungi depends on soil phosphorus and cadmium concentrations[J].Communications in Soil Science and Plant Analysis, 2011, 42(15): 1882-1897. doi: 10.1080/00103624.2011.587572

[84]

Angle J S, Heckman J R. Effect of soil-pH and sewage-sludge on VA mycorrhizal infection of soybeans[J].Plant and Soil, 1986, 93(3): 437-441. doi: 10.1007/BF02374294

[85]

Robinson B H, Leblanc M, Petit D, et al. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils[J].Plant and Soil, 1998, 203(1): 47-56. doi: 10.1023/A:1004328816645

[86]

Christophersen H M, Smith F A, Smith S E, et al. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway[J].New Phytologist, 2009, 184(4): 962-974. doi: 10.1111/j.1469-8137.2009.03009.x

[87]

Kothari S K, Marschner H, George E, et al. Effect of VA my-corrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize[J].New Phytologist, 1990, 116(2): 303-311. doi: 10.1111/nph.1990.116.issue-2

[88]

Guo Y, George E, Marschner H, et al. Contribution of an arbu-scular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants[J].Plant and Soil, 1996, 184(2): 195-205. doi: 10.1007/BF00010449

[89]

Joner E J, Leyval C. Uptake of Cd-109 by roots and hyphae of a Glomus mosseae Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium[J].New Phytologist, 1997, 135(2): 353-360. doi: 10.1046/j.1469-8137.1997.00633.x

[90]

Jansa J, Mozafar A, Frossard E, et al. Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize[J]. Agronomie, 2003, 23(5/6): 481-488.

[91]

Gonzalez-Chavez M D A, Ortega-Larrocea M D, Carrillo-Gonzalez R, et al. Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12): 1197-1209.

[92]

Dupre de B H, Voets L, Delvaux B, et al. Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions[J].Environmental Microbiology, 2006, 8(11): 1926-1934. doi: 10.1111/emi.2006.8.issue-11

[93]

Rufyikiri G, Thiry Y, Declerck S, et al. Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions[J].New Phytologist, 2003, 158(2): 391-399. doi: 10.1046/j.1469-8137.2003.00747.x

[94]

Wu S L, Zhang X, Sun Y Q, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science & Technology, 2015, 49: 14036-14047.

[95]

Wu S L, Zhang X, Sun Y Q, et al. Chromium immobili-zation by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses[J].Journal of Hazardous Materials, 2016, 316: 34-42. doi: 10.1016/j.jhazmat.2016.05.017

[96]

Galli U, Schuepp H, Brunold C, et al. Heavy-metal binding by mycorrhizal fungi[J].Physiologia Plantarum, 1994, 92(2): 364-368. doi: 10.1111/ppl.1994.92.issue-2

[97]

Chen B D, Christie P, Li X L, et al. A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza[J].Chemosphere, 2001, 42(2): 185-192. doi: 10.1016/S0045-6535(00)00124-7

[98]

陈保冬, 李晓林, 朱永官, 等. 丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J]. 菌物学报, 2005, 24(2): 283-291.

Chen B D, Li X L, Zhu Y G, et al. Potential and characteristics of heavy metals adsorption by AM fungal mycelium[J]. Mycosystema, 2005, 24(2): 283-291.

[99]

Joner E J, Briones R, Leyval C, et al. Metal-binding capacity of arbuscular mycorrhizal mycelium[J].Plant and Soil, 2000, 226(2): 227-234. doi: 10.1023/A:1026565701391

[100]

Gonzalez-Chavez C, D'Haen J, Vangronsveld J, et al. Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil[J].Plant and Soil, 2002, 240(2): 287-297. doi: 10.1023/A:1015794622592

[101]

Zhang X H, Lin A J, Gao Y L, et al. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake[J].Soil Biology and Biochemistry, 2009, 41(5): 930-935. doi: 10.1016/j.soilbio.2008.08.011

[102]

Weiersbye I M, Straker C J, Przybylowicz W J, et al. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings[J]. Nuclear Instruments & Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1999, 158(1/2/3/4): 335-343.

[103]

Gonzalez-Guerrero M, Melville L H, Ferrol N, et al. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J].Canadian Journal of Microbiology, 2008, 54(2): 103-110. doi: 10.1139/W07-119

[104]

Wu S L, Zhang X, Chen B D, et al. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J].Environmental and Experimental Botany, 2016, 122: 10-18. doi: 10.1016/j.envexpbot.2015.08.006

[105]

Nayuki K, Chen B D, Ohtomo R, et al. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence[J].Microbes and Environments, 2014, 29(1): 60-66. doi: 10.1264/jsme2.ME13093

[106]

Wu S L, Vosátka M, Vogel-Mikus K, et al. Nano zero-valent iron mediated metal (loid) uptake and translocation by arbuscular mycorrhizal symbioses[J].Environmental Science & Technology, 2018, . doi: 10.1021/acs.est.7b05516

[107]

Subramanian K S, Tenshia V, Jayalakshmi K, et al. Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization[J].Applied Soil Ecology, 2009, 43(1): 32-39. doi: 10.1016/j.apsoil.2009.05.009

[108]

张旭红, 林爱军, 张莘, 等. 丛枝菌根真菌对旱稻根际Pb形态分布的影响[J]. 中国农学通报, 2012, 28(6): 24-29. doi: 10.3969/j.issn.1000-6850.2012.06.005

Zhang X H, Lin A J, Zhang X, et al. The effects of arbuscular mycorrhizal fungi (AMF) on forms of Pb in the upland rice rhizosphere[J].Chinese Agricultural Science Bulletin, 2012, 28(6): 24-29. doi: 10.3969/j.issn.1000-6850.2012.06.005

[109]

Manceau A, Nagy K L, Marcus M A, et al. Formation of metallic copper nanoparticles at the soil-root interface[J]. Environmental Science & Technology, 2008, 42(5): 1766-1772.

[110]

Huang Y, Tao S, Chen Y J, et al. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil[J]. Journal of Environmental Sciences-China, 2005, 17(2): 276-280.

[111]

Leung H M, Wu F Y, Cheung K C, et al. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator[J].Journal of Hazardous Materials, 2010, 181(1-3): 497-507. doi: 10.1016/j.jhazmat.2010.05.042

[112]

刘云霞, 周益奇, 董妍, 等. 接种丛枝菌根真菌(Glomus mosseae)对旱稻吸收砷及土壤砷形态变化的影响[J]. 生态毒理学报, 2012, 7(2): 195-200.

Liu Y X, Zhou Y Q, Dong Y, et al. Effect of inoculation of arbuscular mycorrhizal fungi (Glomus mosseae) on As uptake of upland rice and transformation of As speciation in soil[J]. Asian Journal of Ecotoxicology, 2012, 7(2): 195-200.

[113]

Rillig M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J].Canadian Journal of Soil Science, 2004, 84(4): 355-363. doi: 10.4141/S04-003

[114]

Rillig M C, Wright S F, Nichols K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J].Plant and Soil, 2001, 233(2): 167-177. doi: 10.1023/A:1010364221169

[115]

Gonzalez-Chavez M C, Carrillo-Gonzalez R, Wright S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J].Environmental Pollution, 2004, 130(3): 317-323. doi: 10.1016/j.envpol.2004.01.004

[116]

Driver J D, Holben W E, Rillig M C, et al. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 2005, 37(1): 101-106.

[117]

Cornejo P, Meiera S, Borie G, et al. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration[J].Science of the Total Environment, 2008, 406(1-2): 154-160. doi: 10.1016/j.scitotenv.2008.07.045

[118]

Vodnik D, Grcman H, Macek I, et al. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil[J]. Science of the Total Environment, 2008, 392(1): 130-136.

[119]

Gonzáalez-Chávez M C, Carrillo-González R, Wright S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3): 317-323.

[120]

Posta K, Marschner H, Romheld V, et al. Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize[J].Mycorrhiza, 1994, 5(2): 119-124. doi: 10.1007/BF00202343

[121]

Kothari S K, Marschner H, Romheld V, et al. Effect of a vesicular arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea Mays L.)[J].New Phytologist, 1991, 117(4): 649-655. doi: 10.1111/nph.1991.117.issue-4

[122]

Solis-Dominguez F A, Valentin-Vargas A, Chorover J, et al. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings[J].Science of the Total Environment, 2011, 409(6): 1009-1016. doi: 10.1016/j.scitotenv.2010.11.020

[123]

Li X L, Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil[J].Chemosphere, 2001, 42(2): 201-207. doi: 10.1016/S0045-6535(00)00126-0

[124]

Bethlenfalvay G J, Andrade G, Azcon-Aguilar C, et al. Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilized peas (Pisum sativum L.)[J].Biology and Fertility of Soils, 1997, 24(2): 164-168. doi: 10.1007/s003740050225

[125]

Bi Y L, Li X L, Christie P, et al. Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus[J].Chemosphere, 2003, 50(6): 831-837. doi: 10.1016/S0045-6535(02)00227-8

[126]

Janouskova M, Pavlikova D. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium[J]. Plant and Soil, 2010, 332(1/2): 511-520.

[127]

González-Chávez M del C A, Ortega-Larrocea M del P, Carrillo-González R, et al. Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J].Fungal Biology, 2011, 115(12): 1197-209. doi: 10.1016/j.funbio.2011.08.005

[128]

González-Guerrero M, Azcón-Aguilar C, Mooney M, et al. Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family[J].Fungal Genetics and Biology, 2005, 42(2): 130-140. doi: 10.1016/j.fgb.2004.10.007

[129]

Burleigh S H, Kristensen B K, Bechmann I E, et al. A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization[J].Plant Molecular Biology, 2003, 52(5): 1077-1088. doi: 10.1023/A:1025479701246

[130]

Chen B, Nayuki K, Kuga Y, et al. Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis[J]. Microbes and Environments, 2018, : ME18010.

[131]

González-Guerrero M, Melville L H, Ferrol N, et al. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2): 103-110.

[132]

Li J L, Sun Y Q, Zhang X, et al. A novel methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization[J].Chemosphere, 2018, 209: 392-400. doi: 10.1016/j.chemosphere.2018.06.092

[133]

Chen X, Li H, Chan W F, et al. Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress[J].Chemosphere, 2012, 89(10): 1248-1254. doi: 10.1016/j.chemosphere.2012.07.054

[134]

Christophersen H M, Smith F A, Smith S E, et al. Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in medicago:Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes[J]. Frontiers in Physiology, 2012, 3: 91.

[135]

陈英旭. 土壤重金属的植物污染化学[M] . 北京: 科学出版社, 2008: 74-84.

Chen Y X. Plant Contamination Chemistry of Heavy Metals in Soil[M] . Beijing: Science Press, 2008: 74-84.
[136]

Paradi I, Berecz B, Halasz K, et al. Influence of arbuscular mycorrhiza and cadmium on the polyamine contents of Ri T-DNA transformed Daucus carota L. root cultures[J]. Acta Biologica Szegediensis, 2003, 47(1/2/3/4): 31-36.

[137]

Aloui A, Dumas-Gaudot E, Daher Z, et al. Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation[J].Plant Physiology and Biochemistry, 2012, 60: 233-239. doi: 10.1016/j.plaphy.2012.08.014

[138]

Andrade S A L, Gratao P L, Schiavinato M A, et al. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations[J].Chemosphere, 2009, 75(10): 1363-1370. doi: 10.1016/j.chemosphere.2009.02.008

[139]

Liu L Z, Gong Z Q, Zhang Y L, et al. Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi[J].Pedosphere, 2011, 21(3): 319-327. doi: 10.1016/S1002-0160(11)60132-X

[140]

Campagnac E, Sahraoui A L H, Debiane D, et al. Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid[J].Mycorrhiza, 2010, 20(3): 167-178. doi: 10.1007/s00572-009-0267-9

[141]

Garg N, Chandel S. Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp under NaCl and Cd stresses[J].Journal of Plant Growth Regulation, 2012, 31(3): 292-308. doi: 10.1007/s00344-011-9239-3

[142]

Ouziad F, Hildebrandt U, Schmelzer E, et al. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress[J].Journal of Plant Physiology, 2005, 162(6): 634-649. doi: 10.1016/j.jplph.2004.09.014

[143]

Cicatelli A, Lingua G, Todeschini V, et al. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J].Annals of Botany, 2010, 106(5): 791-802. doi: 10.1093/aob/mcq170

[144]

Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress[J].Mycorrhiza, 2005, 16(1): 51-60. doi: 10.1007/s00572-005-0016-7

[145]

梁宇, 荆玉祥, 沈世华, 等. 植物蛋白质组学研究进展[J]. 植物生态学报, 2004, 28(1): 114-125. doi: 10.3321/j.issn:1005-264X.2004.01.017

Liang Y, Jing Y X, Shen S H, et al. Advances in plant proteomics[J].Chinese Journal of Plant Ecology, 2004, 28(1): 114-125. doi: 10.3321/j.issn:1005-264X.2004.01.017

[146]

Repetto O, Bestel-Corre G, Dumas-Gaudot E, et al. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots[J].New Phytologist, 2003, 157(3): 555-567. doi: 10.1046/j.1469-8137.2003.00682.x

[147]

Aloui A, Recorbet G, Gollotte A, et al. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis:A root proteomic study[J]. Proteomics, 2009, 9(2): 420-433.

[148]

王真辉.丛枝菌根对植物吸收转运砷的影响及砷胁迫相关比较蛋白组学研究[D].北京: 中国农业大学出版社, 2009: 75-89.

Wang Z H.Effects of Arbuscular Mycorrhiza on Arsenic Uptake and Translocation in Plants and Comparative Genomics Studies on Arsenic Stress[D]. Beijing: China Agricultural University Press, 2009: 75-89.

[149] Halliwell B,Gutteridge J M C. Free Radicals in Biology and Medicine[M] . New York: Oxford Science Publications, 1999: 31-47.
[150]

Avery S V. Metal toxicity in yeasts and the role of oxidative stress[J].Advances in Applied Microbiology, 2001, 49: 111-142. doi: 10.1016/S0065-2164(01)49011-3

[151]

孙存普,张建中,段绍瑾. 自由基生物学导论[M] . 合肥: 中国科学技术大学出版社, 1999: 30-32.

Sun C P,Zhang J Z,Duan S J. Introduction to Free Radical Biology[M] . Hefei: University of Science and Technology of China Press, 1999: 30-32.
[152]

Fridovich I. Superoxide radical and superoxide dismutase[J].Biochemical Society Transactions, 1973, 1: 48-50. doi: 10.1042/bst0010048

[153]

Miller A F. Superoxide dismutases:Active sites that save, but a protein that kills[J].Current Opinion in Chemical Biology, 2004, 8(2): 162-168. doi: 10.1016/j.cbpa.2004.02.011

[154]

Sturtz L A, Diekert K, Jensen L T, et al. A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria-A physiological role for SOD1 in guarding against mitochondrial oxidative damage[J]. Journal of Biological Chemistry, 2001, 276(41): 38084-38089.

[155]

Lanfranco L, Novero M, Bonfante P, et al. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts[J].Plant Physiology, 2005, 137(4): 1319-1330. doi: 10.1104/pp.104.050435

[156]

González-Guerrero M, Oger E, Benabdellah K, et al. Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices[J].Current Genetics, 2010, 56(3): 265-274. doi: 10.1007/s00294-010-0298-y

[157]

Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution of glutathione transferases:Implications for classification of non-mammalian members of an ancient enzyme superfamily[J].Biochemical Journal, 2001, 360: 1-16. doi: 10.1042/bj3600001

[158]

Waschke A, Sieh D, Tamasloukht M, et al. Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices[J].Mycorrhiza, 2006, 17(1): 1-10. doi: 10.1007/s00572-006-0075-4

[159]

Benabdellah K, Azcon-Aguilar C, Valderas A, et al. GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices[J].New Phytologist, 2009, 184(3): 682-693. doi: 10.1111/nph.2009.184.issue-3

[160]

Benabdellah K, Merlos M, Azconaguilar C, et al. GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress[J].Fungal Genetics and Biology, 2009, 46(1): 94-103. doi: 10.1016/j.fgb.2008.09.013

[161]

Lanfranco L. The fine-tuning of heavy metals in my-corrhizal fungi[J].New Phytologist, 2007, 174(1): 3-6. doi: 10.1111/j.1469-8137.2007.02029.x

[162]

Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, et al. GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress[J].Mycorrhiza, 2007, 17(4): 327-335. doi: 10.1007/s00572-007-0108-7

[163]

Bergero R, Lanfranco L, Ghignone S, et al. Enhanced activity of the GmarMT1 promoter from the mycorrhizal fungus Gigaspora margarita at limited carbon supply[J].Fungal Genetics and Biology, 2007, 44(9): 877-885. doi: 10.1016/j.fgb.2007.01.010

[164]

Lanfranco L, Bolchi A, Ros E C, et al. Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus[J]. Plant Physiology, 2002, 130(1): 58-67.

[165]

González-Guerrero M, Benabdellah K, Valderas A, et al. GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices[J]. Mycorrhiza, 2009, 20(2): 137-146.

[166] Azcón-Aguilar C,Barea J M,Gianinazzi S. Mycorrhizas-functional Processes and Ecological Impact[M] . Heidelberg: Springer, 2009: 107-122.
[167]

Montanini B, Blaudez D, Jeandroz S, et al. Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family:Improved signature and prediction of substrate specificity[J].BMC Genomics, 2007, 8: 107. doi: 10.1186/1471-2164-8-107

[168]

Eide D J. The SLC39 family of metal ion transporters[J].Pflugers Archiv-European Journal of Physiology, 2004, 447(5): 796-800. doi: 10.1007/s00424-003-1074-3

[169]

Hildebrandt U, Regvar M, Bothe H, et al. Arbuscular mycorr-hiza and heavy metal tolerance[J].Phytochemistry, 2007, 68(1): 139-146. doi: 10.1016/j.phytochem.2006.09.023

[170]

李景龙, 孙玉青, 陈心桐, 等. 接种AM真菌和施加铁可协同降低水稻砷累积[J]. 菌物学报, 2017, 36(7): 1037-1047.

Li J L, Sun Y Q, Chen X T, et al. Arbuscular mycorrhizal inoculation and ferrum addition synergistically reduce arsenic accumulation in Oryza sativa[J]. Mycosystema, 2017, 36(7): 1037-1047.

[171]

Hamel C. Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture[J]. Agriculture, Ecosystems & Environment, 1996, 60(2/3): 197-210.

[172]

Cano C, Bago A, Dalpe Y, et al. Glomus custos sp. nov., isolated from a naturally heavy metal-polluted environment in Southern Spain[J].Mycotaxon, 2009, 109: 499-515. doi: 10.5248/109.499

[173]

Leung H M, Ye Z H, Wong M H, et al. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1): 1-8.

[174]

Liu Y, Zhu Y G, Chen B D, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.[J].Mycorrhiza, 2005, 15(3): 187-192. doi: 10.1007/s00572-004-0320-7

[175]

Ma Y, Dickinson N M, Wong M H, et al. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings[J]. Soil Biology & Biochemistry, 2006, 38(6): 1403-1412.

[176]

Vivas A, Biro B, Campos E, et al. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp isolated from cadmium polluted soil under increasing cadmium levels[J].Environmental Pollution, 2003, 126(2): 179-189. doi: 10.1016/S0269-7491(03)00195-7

[177]

余海波, 周守标, 宋静, 等. 铜尾矿库能源植物稳定化修复过程中定居植物多样性研究[J]. 中国农学通报, 2010, 26(18): 341-346.

Yu H B, Zhou S B, Song J, et al. Diversity of settled plants during energy crops phytostabilization on copper mine tailings reservoir[J]. Chinese Agricultural Science Bulletin, 2010, 26(18): 341-346.

[178]

Solhi M, Shareatmadari H, Hajabbasi M, et al. Lead and zinc extraction potential of two common crop plants, Helianthus annuus and Brassica napus[J]. Water, Air and Soil Pollution, 2005, 167(1/2/3/4): 59-71.

[179]

Marchiol L, Assolari S, Sacco P, et al. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil[J].Environmental Pollution, 2004, 132(1): 21-27. doi: 10.1016/j.envpol.2004.04.001

[180]

Chen B C, Lai H Y, Juang K W, et al. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass[J].Ecotoxicology and Environmental Safety, 2012, 80: 393-400. doi: 10.1016/j.ecoenv.2012.04.011

[181]

郭家文, 张跃彬, 刘少春, 等. 能源甘蔗在3种尾矿砂上的生长适应性研究[J]. 西南农业学报, 2010, 23(5): 1443-1446. doi: 10.3969/j.issn.1001-4829.2010.05.012

Guo J W, Zhang Y B, Liu S C, et al. Influence of three kinds of mine tailings on growth of adaptability in energy cane[J].Southwest China Journal of Agricultural Sciences, 2010, 23(5): 1443-1446. doi: 10.3969/j.issn.1001-4829.2010.05.012

[182]

侯新村, 范希峰, 武菊英, 等. 草本能源植物修复重金属污染土壤的潜力[J]. 中国草地学报, 2012, 34(1): 59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011

Hou X C, Fan X F, Wu J Y, et al. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metals[J].Chinese Journal of Grassland, 2012, 34(1): 59-64. doi: 10.3969/j.issn.1673-5021.2012.01.011

[183]

Gamalero E, Lingua G, Berta G, et al. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress[J].Canadian Journal of Microbiology, 2009, 55(5): 501-514. doi: 10.1139/W09-010

[184]

毕银丽, 吴福勇, 武玉坤, 等. 丛枝菌根在煤矿区生态重建中的应用[J]. 生态学报, 2005, 25(8): 2068-2073. doi: 10.3321/j.issn:1000-0933.2005.08.034

Bi Y L, Wu F Y, Wu Y K, et al. Application of arbuscular mycorrhizas in ecological restoration of areas affected by coal mining in China[J].Acta Ecologica Sinica, 2005, 25(8): 2068-2073. doi: 10.3321/j.issn:1000-0933.2005.08.034

[185]

毕银丽, 吴王燕, 刘银平, 等. 丛枝菌根在煤矸石山土地复垦中的应用[J]. 生态学报, 2007, 27(9): 3738-3743. doi: 10.3321/j.issn:1000-0933.2007.09.023

Bi Y L, Wu W Y, Liu Y P, et al. Application of arbuscular mycorrhizas in land reclamation of coal spoil heaps[J].Acta Ecologica Sinica, 2007, 27(9): 3738-3743. doi: 10.3321/j.issn:1000-0933.2007.09.023

[186]

杜善周, 毕银丽, 吴王燕, 等. 丛枝菌根对矿区环境修复的生态效应[J]. 农业工程学报, 2008, 24(4): 113-116. doi: 10.3321/j.issn:1002-6819.2008.04.022

Du S Z, Bi Y L, Wu W Y, et al. Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas[J].Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4): 113-116. doi: 10.3321/j.issn:1002-6819.2008.04.022

[187]

毕银丽, 吴福勇, 全文智, 等. 菌根与豆科植物组合在煤矿区废弃物的生态效应[J]. 中国矿业大学学报, 2006, 35(3): 329-335. doi: 10.3321/j.issn:1000-1964.2006.03.009

Bi Y L, Wu F Y, Quan W Z, et al. Ecological effects of matching between mycorrhizal fungus and leguminous plants in solid wastes of mine area[J].Journal of China University of Mining & Technology, 2006, 35(3): 329-335. doi: 10.3321/j.issn:1000-1964.2006.03.009

[188]

Yang C, Hamel C, Schellenberg M P, et al. Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in Semiarid Grasslands National Park, Canada[J].Microbial Ecology, 2010, 59(4): 724-733. doi: 10.1007/s00248-009-9629-2

[189]

Urcelay C, Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity[J].Ecology Letters, 2003, 6(5): 388-391. doi: 10.1046/j.1461-0248.2003.00444.x

相似文献(共17条)

[1]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[2]

曾远, 罗立强. 土壤中特异性微生物与重金属相互作用机制与应用研究进展. 岩矿测试, 2017, 36(3): 209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009

[3]

谭科艳, 刘晓端, 刘久臣, 汤奇峰, 黄园英, 罗松光. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究. 岩矿测试, 2011, 30(4): 451-456.

[4]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

[5]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[6]

翟磊, 詹秀春, 樊兴涛, 温宏利, 焦距, 刘雷雷. 应用S930树脂富集薄样-X射线荧光光谱现场分析环境水体中8种重金属的方法研究. 岩矿测试, 2015, 34(1): 118-128. doi: 10.15898/j.cnki.11-2131/td.2015.01.016

[7]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

[8]

王亚平, 鲍征宇. 恬矿库周围土壤中重金属存在形态特征研究. 岩矿测试, 2000, (1): 7-13.

[9]

朱志敏, 陈家彪, 李庭学, 陈良, 马定华. 四川拉拉铜矿尾矿中重金属资源和环境意义. 岩矿测试, 2011, 30(1): 43-48.

[10]

郝红, 高博, 王健康, 周怀东, 陆瑾, 殷淑华, 朱成. 滦河流域沉积物中重金属分布特征及风险评价. 岩矿测试, 2012, 31(6): 1000-1005.

[11]

田衎, 杨珺, 孙自杰, 周裕敏, 邢书才, 封跃鹏. 矿区污染场地土壤重金属元素分析标准样品的研制. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

[12]

王图锦, 潘瑾, 刘雪莲. 三峡库区澎溪河消落带土壤中重金属形态分布与迁移特征研究. 岩矿测试, 2016, 35(4): 425-432. doi: 10.15898/j.cnki.11-2131/td.2016.04.015

[13]

王振坤, 李学军, 冯爽, 陈焱, 迟杰, 曲雯, 莫宇清, 罗蔷, 蒲峰, 郭晓满. 环境因素对港口矿石堆场中矿产品重金属溶出的影响. 岩矿测试, 2014, 33(2): 256-261.

[14]

顾涛, 赵信文, 胡雪原, 喻望, 曾敏, 王节涛. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价. 岩矿测试, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190

[15]

王喆, 谭科艳, 梁明会, 蔡敬怡, 侯士田, 王悦, 江鹏. 天然丝光沸石表面重构改性及其在水中去除重金属的应用. 岩矿测试, 2018, 37(6): 678-686. doi: 10.15898/j.cnki.11-2131/td.201802110018

[16]

刘久臣, 刘晓端, 徐 清, 汤奇峰. 上海崇明岛表层土壤重金属元素分布特征与环境地球化学基线值研究. 岩矿测试, 2010, 29(3): 245-249.

[17]

胡恭任, 于瑞莲, 赵金秀, 刘小进, 涂湘林. 泉州湾洛阳江河口桐花树和秋茄红树植物中重金属元素的分布与富集特征. 岩矿测试, 2010, 29(3): 236-240.

计量
  • PDF下载量(18)
  • 文章访问量(381)
  • HTML全文浏览量(109)
  • 被引次数(0)
目录

Figures And Tables

丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用

陈保冬, 张莘, 伍松林, 李林凤