【引用本文】 刘圣华, 史慧霞, 蒋雅欣, 等. 加速器质谱14C分析石墨制备技术研究进展[J]. 岩矿测试, 2019, 38(5): 583-597. doi: 10.15898/j.cnki.11-2131/td.201807100082
LIU Sheng-hua, SHI Hui-xia, JIANG Ya-xin, et al. Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis[J]. Rock and Mineral Analysis, 2019, 38(5): 583-597. doi: 10.15898/j.cnki.11-2131/td.201807100082

加速器质谱14C分析石墨制备技术研究进展

1. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

2. 

中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061

3. 

天津大学表层地球系统科学研究院, 天津 300072

收稿日期: 2018-07-10  修回日期: 2019-04-28  接受日期: 2019-07-16

基金项目: 中国地质科学院基本科研业务费项目(YYWF201517,SK201603)

作者简介: 刘圣华, 硕士, 研究实习员, 主要从事同位素分析研究。E-mail:cuglsh@hotmail.com

通信作者: 刘冰冰, 硕士, 工程师, 主要从事地下水质谱和光谱分析研究。E-mail:408729357@qq.com

Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis

1. 

School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China

2. 

Institute of Hydrology and Environmental Geology, China Academy of Geological Sciences, Shijiazhuang 050061, China

3. 

Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China

Corresponding author: LIU Bing-bing, 408729357@qq.com

Received Date: 2018-07-10
Revised Date: 2019-04-28
Accepted Date: 2019-07-16

摘要:加速器质谱(AMS)是进行14C同位素分析的主要技术手段,而高精度低本底加速器质谱14C分析主要受样品制备技术限制,因此探讨如何提高石墨制备的稳定性和控制碳污染降低本底将有助于产出高质量14C分析数据,突破14C测年上限(约5.0万年),进一步拓宽14C年代学和同位素示踪的应用范畴。本文详细阐述了催化还原法(H2/Fe法、Zn/Fe法和Zn-TiH2/Fe法)制备石墨样品的真空装置和主要工作原理,指出了微量样品石墨制备过程中同位素分馏、石墨产率、束流强度以及精密度与样品量之间存在严重的依赖关系及其抑制方法。着重探讨了石墨制备技术实验条件(还原剂、催化剂、温度等)的优化选择及其与石墨产率、同位素分馏、束流性能之间的内在联系,总结分析了碳污染来源并探寻合适的碳污染控制技术。目前的研究表明最佳实验条件为:H2/Fe法宜采用还原剂H2/CO2(体积比2~2.5),催化剂为源自氢还原单质铁粉(-325目球粒,Fe/C=2~5),温度500~550℃;Zn/Fe法宜采用还原剂Zn/C(质量比50~80),催化剂为源自氢还原单质铁粉(-325目球粒,Fe/C=2~5),Zn反应管温度400~450℃,Fe反应管温度500~550℃。碳污染来源于制备过程中的各个方面,除采用高温除碳的方式外还可采用适当的数学模型加以校正,但还需要更多详细的实验工作来加强现有认识,以期更好地消除碳污染对测试结果的影响。对测年目标组分不稳定的样品(如地下水中的溶解无机碳)应避免样品直接暴露于大气,以减少野外采样过程中现代大气CO2对测量结果的影响。

关键词: 加速器质谱, 14C, 石墨制备, 微量样品, 碳污染

要点

(1) 探讨了实验条件对石墨性能的影响,提出了石墨制备的最佳实验条件。

(2) 分析了碳污染来源,提出了低本底控制办法。

(3) 总结了微量样品制备技术的发展现状及其存在的问题。

Research Progress on Graphite Target Preparation for Accelerator Mass Spectrometry 14C Analysis

ABSTRACT

BACKGROUND:

Accelerator mass spectrometry (AMS) is the most popular technique for radiocarbon analysis. However, yielding high precision and low background 14C data by AMS is hindered by sample preparation. Therefore, improving the stability of graphitization and reducing the carbon contamination in the background helps to produce high quality 14C data and break through the 14C dating upper limit (about 50000ya), further broadening the application range of 14C chronology and isotope tracer.

OBJECTIVES:

To provide basic reference for beginners or more experienced scientists who are going to set up a radiocarbon sample preparation vacuum line and methods.

METHODS:

The development of graphite preparation technology with respect to sample preparation vacuum line apparatus and the underlying principle of H2/Fe, Zn/Fe and Zn-TiH2/Fe methods were reviewed. The advantages and drawbacks of these methods were also discussed. Additionally, the optimization of experimental conditions from the perspective of reductant, catalyst and graphitization temperature, accompanied by the inner relationship with the graphite yield, isotope fractionation and beam performance were emphatically discussed. The sources of carbon contamination and suitable control technology were also argued.

RESULTS:

The optimized graphitization conditions by H2/Fe method was H2/CO2=2-2.5 (V/V), -325 meshes ion powder derived from hydrogen reduction with Fe/C=2-5 (m/m), and graphitization temperature of 500-550℃, while by Zn/Fe method it was Zn/C=50-80 (m/m), -325 meshes ion powder derived from hydrogen reduction with Fe/C=2-5 (m/m), and graphitization temperature of 400-450℃ for Zn reaction tube and 500-550℃ for Fe reaction tube. The carbon contamination originated from each step in the sample preparation procedure, which could be either reduced by high-temperature bake or calibrated by mathematical model, but it required more detailed study to strengthen our knowledge and eliminate the effects on results.

CONCLUSIONS:

Both of the sample preparation methods used and the optimum of graphitization conditions are critical for good performance of the graphite target and the final precision and accuracy of the measurement, especially for ultra-small size samples. However, these effects could be reduced or even eliminated by optimizing the experimental procedures and the graphitization conditions or subtracting by mathematical models.

KEY WORDS: accelerator mass spectrometry, radiocarbon, graphite preparation, small (ultra-small) sample, carbon contamination

HIGHLIGHTS

(1) The effects of graphitization conditions on graphite performance were discussed and the optimum conditions were proposed.

(2) The carbon contamination source was analyzed, and the method of reducing background was advocated.

(3) The development of ultra-small sample preparation technology and its problems were reviewed.

本文参考文献

[1]

Libby W F, Anderson E C, Arnold J R, et al. Age determination by radiocarbon content:World-wide assay of natural radiocarbon[J].Science, 1949, 109(2827): 227-228. doi: 10.1126/science.109.2827.227

[2]

Hellborg R, Skog G. Accelerator mass spectrometry[J].Mass Spectrometry Reviews, 2008, 27(5): 398-427. doi: 10.1002/mas.20172

[3]

管永精, 王慧娟, 鞠志萍, 等. 加速器质谱技术及其在地球科学中的应用[J]. 岩矿测试, 2005, 24(4): 41-47.

Guan Y J, Wang H J, Ju Z P, et al. Acclerator mass spectrometry and its applications in geosciences[J]. Rock and Mineral Analysis, 2005, 24(4): 41-47.

[4]

Kutschera W. Applications of accelerator mass spec-trometry[J].International Journal of Mass Spectrometry, 2013, 349-350(1): 203-218.

[5]

Vogel J S, Southon J R, Nelson D E, et al. Performance of catalytically condensed carbon for use in accelerator mass spectrometry[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2): 289-293. doi: 10.1016/0168-583X(84)90529-9

[6]

Slota P, Jull A T, Linick T, et al. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO[J].Radiocarbon, 1987, 29(2): 303-306. doi: 10.1017/S0033822200056988

[7]

Ertunc T, Xu S, Bryant C L, et al. Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory[J].Radiocarbon, 2005, 47(3): 453-464. doi: 10.1017/S0033822200035232

[8]

Xu X, Trumbore S E, Zheng S, et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets:Reducing background and attaining high precision[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1): 320-329. doi: 10.1016/j.nimb.2007.01.175

[9]

Polach H A. Radiocarbon targets for AMS:A review of perceptions, aims and achievements[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2): 259-264. doi: 10.1016/0168-583X(84)90523-8

[10]

Vogel J S, Nowikow I G, Southon J R, et al. Survey of simple carbon compounds for use in a negative ion sputter source[J].Radiocarbon, 1983, 25(2): 775-784. doi: 10.1017/S0033822200006135

[11]

Ding P, Shen C D, Yi W X, et al. Small-mass graphite preparation for AMS 14C measurements performed at GIGCAS, China[J].Radiocarbon, 2017, 59(3): 705-711. doi: 10.1017/RDC.2017.38

[12]

庞义俊, 何明, 杨旭冉, 等. 基于小型单极加速器质谱测量14C的样品制备技术研究[J]. 原子能科学技术, 2017, 51(10): 1866-1873. doi: 10.7538/yzk.2017.youxian.0012

Pang Y J, He M, Yang X R, et al. 14C sample preparation for compact single stage AMS[J].Atomic Energy Science and Technology, 2017, 51(10): 1866-1873. doi: 10.7538/yzk.2017.youxian.0012

[13]

Zoppi U, Crye J, Song Q, et al. Performance evaluation of the New AMS system at Accium BioSciences[J]. Radiocarbon, 2016, 49(1): 171-180.

[14]

Rinyu L, Orsovszki G, Futó I, et al. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361(1): 406-413.

[15]

Orsovszki G, Rinyu L. Flame-sealed tube graphitization using zinc as the sole reduction agent:Precision improvement of EnvironMICADAS 14C measurements on graphite targets[J].Radiocarbon, 2015, 57(5): 979-990. doi: 10.2458/azu_rc.57.18193

[16]

杨雪, 郑勇刚, 尹金辉, 等. 加速器14C制靶系统的研制及性能检验[J]. 地震地质, 2013, 35(4): 930-934. doi: 10.3969/j.issn.0253-4967.2013.04.021

Yang X, Zheng Y G, Yin J H, et al. Developments and performance tests of the new AMS graphite target line[J].Seismology and Geology, 2013, 35(4): 930-934. doi: 10.3969/j.issn.0253-4967.2013.04.021

[17]

Xu X, Gao P, Salamanca E G, et al. Ultra small-mass graphi-tization by sealed tube zinc reduction method for AMS 14C measurements[J]. Radiocarbon, 2013, 55(2-3): 608-616.

[18]

Piotrowska N. Status report of AMS sample preparation laboratory at GADAM Centre, Gliwice, Poland[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294: 176-181. doi: 10.1016/j.nimb.2012.05.017

[19]

Delqué-Količ E, Comby-Zerbino C, Ferkane S, et al. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 189-193.

[20]

Marzaioli F, Borriello G, Passariello I, et al. Zinc redu-ction as an alternative method for AMS radiocarbon dating:Process optimization at CIRCE[J].Radiocarbon, 2008, 50(1): 139-149. doi: 10.1017/S0033822200043423

[21]

Zhou W, Lu X, Wu Z, et al. New results on Xi'an-AMS and sample preparation systems at Xi'an-AMS center[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 262(1): 135-142. doi: 10.1016/j.nimb.2007.04.221

[22]

Uchida M, Shibata Y, Yoneda M, et al. Technical pro-gress in AMS microscale radiocarbon analysis[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1): 313-317.

[23]

Hua Q, Zoppi U, Williams A A, et al. Small-mass AMS radiocarbon analysis at ANTARES[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1): 284-292.

[24]

D'elia M, Calcagnile L, Quarta G, et al. Sample pre-paration and blank values at the AMS radiocarbon facility of the University of Lecce[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1): 278-283.

[25]

Kitagawa H, Masazawa T, Nakamura T, et al. A batch pre-paration method for graphite targets with low background for AMS 14C measurements[J].Radiocarbon, 1993, 35(2): 295-300. doi: 10.1017/S0033822200064973

[26]

Verkouteren R M. Iron-manganese system for prepara-tion of radiocarbon AMS targets:Characterization of procedural chemical-isotopic blanks and fractionation[J].Radiocarbon, 1997, 39(3): 269-283. doi: 10.1017/S003382220005325X

[27]

Vogel J S. Rapid production of graphite without conta-mination for biomedical AMS[J].Radiocarbon, 1992, 34(3): 344-350. doi: 10.1017/S0033822200063529

[28]

Kim S H, Kelly P B, Clifford A J, et al. Biological/biomedical accelerator mass spectrometry targets.1.Optimizing the CO2 reduction step using zinc dust[J].Analytical Chemistry, 2008, 80(20): 7651-7660. doi: 10.1021/ac801226g

[29]

刘圣华, 杨育振, 徐胜, 等. 加速器质谱14C制样真空系统及石墨制备方法研究[J]. 岩矿测试, 2019, 38(3): 270-279.

Liu S H, Yang Y Z, Xu S, et al. 14C sample preparation vacuum line and graphite preparation method for 14C-AMS measurement[J]. Rock and Mineral Analysis, 2019, 38(3): 270-279.

[30]

McNichol A P, Gagnon A R, Jones G A, et al. Illumina-tion of a black box:Analysis of gas composition during graphite target preparation[J].Radiocarbon, 1992, 34(3): 321-329. doi: 10.1017/S0033822200063499

[31]

Rinyu L, Futó I, Kiss A Z, et al. Performance test of a new graphite target production facility in ATOMKI[J].Radiocarbon, 2007, 49(2): 217-224. doi: 10.1017/S0033822200042144

[32]

Hong W, Park J H, Kim K J, et al. Establishment of chemical preparation methods and development of an automated reduction system for AMS sample preparation at KIGAM[J].Radiocarbon, 2010, 52(3): 1277-1287. doi: 10.1017/S0033822200046361

[33]

Macario K D, Alves E Q, Oliveira F M, et al. Graphiti-zation reaction via zinc reduction:How low can you go?[J].International Journal of Mass Spectrometry, 2016, 410(1): 47-51.

[34]

Macario K D, Oliveira F M, Moreira V N, et al. Optimi-zation of the amount of zinc in the graphitization reaction for radiocarbon AMS measurements at LAC-UFF[J].Radiocarbon, 2016, 59(3): 1-7.

[35]

Rinyu L, Molnár M, Major I, et al. Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 270-275.

[36]

Khosh M S, Xu X, Trumbore S E, et al. Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8): 927-930. doi: 10.1016/j.nimb.2009.10.066

[37]

Wild E, Golser R, Hille P, et al. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator[J]. Radiocarbon, 1998, 40(1): 273-282.

[38]

Vogel J S, Southon J R, Nelson D E, et al. Catalyst and binder effects in the use of filamentous graphite for AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1987, 29(1): 50-56.

[39]

Dee M, Bronk Ramsey C. Refinement of graphite target production at ORAU[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2000, 172(1-4): 449-453. doi: 10.1016/S0168-583X(00)00337-2

[40]

Kim S H, Kelly P B, Clifford A J, et al. Biological/biomedical accelerator mass spectrometry targets.2.Physical, morphological, and structural characteristics[J].Analytical Chemistry, 2008, 80(20): 7661-7669. doi: 10.1021/ac801228t

[41]

Kim S H, Kelly P B, Ortalan V, et al. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry[J].Analytical Chemistry, 2010, 82(6): 2243-2252. doi: 10.1021/ac9020769

[42]

Santos G M, Southon J R, Griffin S, et al. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1): 293-302. doi: 10.1016/j.nimb.2007.01.172

[43]

Vogel J S, Nelson D, Southon J R, et al. 14C background levels in an accelerator mass spectrometry system[J].Radiocarbon, 1987, 29(3): 323-333. doi: 10.1017/S0033822200043733

[44]

Aerts-Bijma A T, Meijer H A J, Plicht J V D, et al. AMS sample handling in Groningen[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1-4): 221-225. doi: 10.1016/S0168-583X(96)00672-6

[45]

Gillespie R, Hedges R E M. Laboratory contamination in radiocarbon accelerator mass spectrometry[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2): 294-296. doi: 10.1016/0168-583X(84)90530-5

[46]

Steinhof A, Altenburg M, Machts H, et al. Sample preparation at the Jena 14C Laboratory[J].Radiocarbon, 2017, 59(3): 815-830. doi: 10.1017/RDC.2017.50

[47]

Verkouteren R M, Klouda G A, Currie L A, et al. Pre-paration of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry:A closed-system approach[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1987, 29(1-2): 41-44. doi: 10.1016/0168-583X(87)90200-X

[48]

Ertunc T, Xu S, Bryant C L, et al. Investigation into background levels of small organic samples at the NERC Radiocarbon Laboratory[J].Radiocarbon, 2007, 49(2): 271-280. doi: 10.1017/S0033822200042193

[49]

Yokoyama Y, Miyairi Y, Matsuzaki H, et al. Relation be-tween acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1): 330-334. doi: 10.1016/j.nimb.2007.01.176

[50]

Paul D, Been H A, Aerts-Bijma A T, et al. Conta-mination on AMS sample targets by modern carbon is inevitable[J].Radiocarbon, 2016, 58(2): 407-418. doi: 10.1017/RDC.2016.9

[51]

De Rooij M, Van Der Plicht J, Meijer H A J, et al. Porous iron pellets for AMS 14C analysis of small samples down to ultra-microscale size (10-25μg C)[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8): 947-951. doi: 10.1016/j.nimb.2009.10.071

[52]

Yokoyama Y, Koizumi M, Matsuzaki H, et al. Developing ultra small-scale radiocarbon sample measurement at the University of Tokyo[J]. Radiocarbon, 2010, 52(3): 310-318.

[53]

Walter S, Sunita R, Gagnon A R, et al. Ultra-small graphitization reactors for ultra-microscale 14C analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility[J].Radiocarbon, 2015, 57(1): 109-122. doi: 10.2458/azu_rc.57.18118

[54]

Guaciara M, Santos X X. Bag of Tricks:A set of tech-niques and other resources to help 14C laboratory setup, sample processing, and beyond[J].Radiocarbon, 2016, 59(3): 785-801.

[55]

Dunbar E, Cook G T, Naysmith P, et al. AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory[J].Radiocarbon, 2016, 58(1): 9-23. doi: 10.1017/RDC.2015.2

[56]

Brown T A, Southon J R. Corrections for contamination background in AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1): 208-213.

[57]

Donahue D J, Linick T W, Jull A J T, et al. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements[J].Radiocarbon, 1990, 32(2): 135-142. doi: 10.1017/S0033822200040121

[58]

Aggarwal P K, Araguas-Araguas L, Choudhry M, et al. Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis[J].Groundwater, 2014, 52(1): 20-24. doi: 10.1111/gwat.12110

[59]

Yang B, Smith A M, Hua Q, et al. A cold finger cooling system for the efficient graphitisation of microgram-sized carbon samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 262-265.

[60]

Liebl J, Steier P, Golser R, et al. Carbon background and ionization yield of an AMS system during 14C measurements of microgram-size graphite samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 335-339.

[61]

Hajdas I, Bonani G, Thut J, et al. A report on sample preparation at the ETH/PSI AMS facility in Zurich[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224(1): 267-271.

[62]

Sakamoto M, Wakasa S, Matsuzaki H, et al. Design and performance tests of an efficient sample preparation system for AMS-14C dating[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8): 935-939. doi: 10.1016/j.nimb.2009.10.068

[63]

Wacker L, Němec M, Bourquin J, et al. A revolutionary graphi-tisation system:Fully automated, compact and simple[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7): 931-934.

[64]

Nagasawa S, Kitagawa H, Nakanishi T, et al. An app-roach toward automatic graphitization of CO2 samples for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 266-269.

[65]

Solís C, Chávez E, Ortiz M E, et al. AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE Ⅲ) from aerosol collected on quartz filters[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361: 419-422. doi: 10.1016/j.nimb.2015.05.027

[66]

Yang B, Smith A M, Long S, et al. Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2015, 361(1): 363-371.

[67]

Mojmír N L W, Gäggeler H. Optimization of the graphiti-zation process at Age-1[J]. Radiocarbon, 2010, 52(2-3): 1380-1393.

[68]

Wacker L, Fülöp R H, Hajdas I, et al. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294: 214-217. doi: 10.1016/j.nimb.2012.08.030

[69]

Mcintyre C P, Roberts M L, Burton J R, et al. Rapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system[J]. Paleoceanography, 2011, 26(4): PA4212.

[70]

Longworth B E, Robinson L F, Roberts M L, et al. Car-bonate as sputter target material for rapid 14C AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 328-334.

[71]

Kitagawa H. CO2-laser decomposition method of car-bonate for AMS 14C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 218-220.

[72]

Wacker L, Münsterer C, Hattendorf B, et al. Direct coup-ling of a laser ablation cell to an AMS[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 294(1): 287-290.

[73]

Münsterer C, Wacker L, Hattendorf B, et al. Rapid reve-lation of radiocarbon records with laser ablation accelerator mass spectrometry[J].Chimia, 2014, 68(4): 215-216. doi: 10.2533/chimia.2014.215

[74]

Welte C, Wacker L, Hattendorf B, et al. Optimizing the analyte introduction for 14C laser ablation-AMS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(9): 1813-1819. doi: 10.1039/C7JA00118E

[75]

Welte C, Wacker L, Hattendorf B, et al. Laser ablation-accelerator mass spectrometry:An approach for rapid radiocarbon analyses of carbonate archives at high spatial resolution[J].Analytical Chemistry, 2016, 88(17): 8570-8576. doi: 10.1021/acs.analchem.6b01659

[76]

Welte C, Wacker L, Hattendorf B, et al. Novel laser ablation sampling device for the rapid radiocarbon analysis of carbonate samples by accelerator mass spectrometry[J].Radiocarbon, 2016, 58(2): 419-435. doi: 10.1017/RDC.2016.6

[77]

Kim S H, Kelly P B, Clifford A J, et al. Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput Zn reduction method[J].Analytical Chemistry, 2009, 81(14): 5949-5954. doi: 10.1021/ac900406r

相似文献(共20条)

[1]

张丽, 周卫健, 常宏, 赵国庆, 宋少华, 武振坤. 暴露测年样品中26Al和10Be分离及其加速器质谱测定. 岩矿测试, 2012, 31(1): 83-89.

[2]

管永精, 王慧娟, 何明, 董克君, 林敏, 鞠志萍, 汪越, 武绍勇, 姜山. 加速器质谱技术及其在地球科学中的应用. 岩矿测试, 2005, (4): 277-283.

[3]

刘圣华, 杨育振, 徐胜, 张慧, 蒋雅欣, 史慧霞. 加速器质谱14C制样真空系统及石墨制备方法研究. 岩矿测试, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084

[4]

任静, 李超, 刘宇平, 武振坤, 任磊. 河流阶地样品中石英纯化和宇宙核素10Be和26Al分离方法研究. 岩矿测试, 2018, 37(3): 275-282. doi: 10.15898/j.cnki.11-2131/td.201710310171

[5]

杨学清, 应启和, 饶文波, 王华, 冯玉梅, 苏治国, 涂林玲, 钟云. 常规碳十四制样系统及其优化. 岩矿测试, 2007, 26(2): 129-132.

[6]

姜山, 董克君, 何明. 超灵敏加速器质谱技术进展及应用. 岩矿测试, 2012, 31(1): 7-23.

[7]

周炼, 蒋菘生. 加速器质谱计测定地下水中的^31Cl及其应用. 岩矿测试, 1999, (2): 92-96.

[8]

吴静淑, 罗续荣. 制备碳、氧同位素样品的磷酸——加热300℃脱水法. 岩矿测试, 1987, (1): 73-74.

[9]

周文勤. 加速器质谱分析超痕量铍同位素研究深海沉积物沉积速率和多金属结核生长速率 . 岩矿测试, 1997, (2): 109-117.

[10]

佟玲, 杨佳佳, 吴淑琪. 气相色谱-串联质谱技术分析地质调查植物样品中持久性有机污染物的优势. 岩矿测试, 2012, 31(6): 1021-1027.

[11]

侯书恩, 常诚. 探针原子化石墨炉原子吸收法直接测定地质样品中的微量铋. 岩矿测试, 1989, (1): 4-8.

[12]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[13]

林光西, 周泳德, 周康明. 泡沫塑料富集-石墨炉原子吸收光谱法测定地质样品中微量铊. 岩矿测试, 2006, 25(4): 377-380.

[14]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[15]

邢夏, 徐进力, 何晓辉, 孙晓玲, 张芳. 石墨炉原子吸收光谱法测定地球化学样品中微量铬. 岩矿测试, 2011, 30(3): 333-336.

[16]

刘幼宏, 徐克迪, 董骥, 田易. SMT-2型石墨碳测定仪. 岩矿测试, 1993, (1): 61-63.

[17]

朱永昌, 杨翼华. 气相色谱法测定岩矿中有机碳无机碳及石墨碳. 岩矿测试, 1996, (2): 124-128134.

[18]

李振涛, 武朝辉, 郭冬发, 范光, 崔建勇. 红土型镍钴矿分析样品的制备方法和制备装置研制. 岩矿测试, 2011, 30(6): 695-698.

[19]

李月芳, , 唐富荣. 氢同位素分析样品制备新方法. 岩矿测试, 2001, (3): 179-182.

[20]

张健, 陈华, 陆太进, 丘志力, 魏然, 柯捷. 山东金刚石碳同位素组成的二次离子质谱显微分析. 岩矿测试, 2012, 31(4): 591-596.

计量
  • PDF下载量(24)
  • 文章访问量(186)
  • HTML全文浏览量(33)
  • 被引次数(0)
目录

Figures And Tables

加速器质谱14C分析石墨制备技术研究进展

刘圣华, 史慧霞, 蒋雅欣, 徐胜, 刘冰冰