【引用本文】 杨朔, 陈辉伦, 盖楠, 等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 2018, 37(5): 549-557. doi: 10.15898/j.cnki.11-2131/td.20180620074
YANG Shuo, CHEN Hui-lun, GAI Nan, et al. Particle Size Distribution of Perfluoroalkyl Substances in Atmospheric Particulate Matter in Beijing[J]. Rock and Mineral Analysis, 2018, 37(5): 549-557. doi: 10.15898/j.cnki.11-2131/td.20180620074

北京市大气颗粒物中全氟烷基化合物的粒径分布特征

1. 

北京科技大学, 北京 100083

2. 

自然资源部生态地球化学重点实验室, 国家地质实验测试中心, 北京 100037

收稿日期: 2018-06-20  修回日期: 2018-08-05  接受日期: 2018-08-10

基金项目: 国家自然科学基金项目(41603021,41473074)

作者简介: 杨朔, 硕士研究生, 环境工程专业。E-mail:tdchys@163.com

通讯作者: 盖楠, 博士, 助理研究员, 从事地球化学和有机化学研究工作。E-mail:gn-1023@163.com

Particle Size Distribution of Perfluoroalkyl Substances in Atmospheric Particulate Matter in Beijing

1. 

University of Science and Technology Beijing, Beijing 100083, China

2. 

Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China

Corresponding author: GAI Nan, gn-1023@163.com

Received Date: 2018-06-20
Revised Date: 2018-08-05
Accepted Date: 2018-08-10

摘要:人为排放的持久性有机污染物倾向于在细级大气颗粒物中富集,但目前国内外关于大气颗粒物中全氟烷基化合物(PFASs)粒径分布在不同国家地区有显著差异,而在我国北京地区PFASs在不同粒径大气颗粒物中的富集能力尚不清楚。本文采用五级大流量主动分级采样器采集了北京市大气颗粒物样品,利用超声萃取结合高效液相色谱-电喷雾负电离源串联质谱测定PFASs含量,探讨了该地区大气颗粒物中PFASs的浓度水平和粒径分布特征,以及大气颗粒物浓度变化对PFASs浓度变化的影响。结果表明:研究区∑PFASs范围为10.1~62.9 pg/m3,76.4%~83.8%的PFASs集中分布在PM2.5颗粒物中,其中含量较高的PFOA、PFNA和PFDA在<0.25 μm细颗粒物中占比最高,分别为26.3%~43.7%、30.3%~68.6%和30.6%~49.7%;PFOS在<0.25 μm细颗粒物中没有检出,主要分布在1~2.5 μm和0.25~1 μm颗粒物中。此外,研究发现北京市霾天大气颗粒物中∑PFASs为晴天的3.5倍,且不同粒径大气颗粒物浓度变化对PFASs各化合物表现出不同的富集能力,其中PFOA、PFOS、PFNA和PFDA等中链PFASs更易富集。

关键词: 全氟烷基化合物, 大气颗粒物, PM2.5, 粒径分布, 富集能力

要点

(1) 揭示了北京市大气颗粒物中全氟烷基化合物的浓度水平和粒径分布特征。

(2) 对比了北京市和国内外研究大气颗粒物中全氟烷基化合物的浓度水平和粒径分布特征。

(3) 探讨了北京市不同粒径大气颗粒物浓度变化对全氟烷基化合物浓度变化的影响。

Particle Size Distribution of Perfluoroalkyl Substances in Atmospheric Particulate Matter in Beijing

ABSTRACT

BACKGROUND:

Anthropogenic emissions of persistent organic pollutants (POPs) tend to be concentrated in fine-level atmospheric particles. However, there are significant differences in the particle size distribution of perfluoroalkyl compounds (PFASs) in atmospheric particulate matter in different countries and regions, and the enrichment capacity of PFASs in different size particulate matter in Beijing is still unclear.

OBJECTIVES:

To reveal the concentration level and particle size distribution characteristics of perfluoroalkyl substances in atmospheric particulate matter in Beijing, by collecting samples using a five stage impactor sampler and to discuss the effects of atmospheric particulate matter concentration changes on the concentration of perfluoroalkyl substances under different sizes.

METHODS:

The samples were pretreated by ultrasonic extraction, and the concentrations of PFASs were determined by High Performance Liquid Chromatography-Electrospray Negative Ionization Source Tandem Mass Spectrometry.

RESULTS:

The concentrations of ∑PFASs are 10.1-62.9 pg/m3, and 76.4%-83.8% of PFASs are concentrated in PM2.5. PFOA, PFNA and PFDA have the highest concentration in the <0.25 μm particles, accounting for 26.3%-43.7%, 30.3%-68.6% and 30.6%-49.7%, respectively. PFOS is not detected in the fine particles (0.25 μm) and 68.9%-2.8% of PFOS are concentrated in the particles with sizes of 0.25-1 μm and 1-2.5 μm.

CONCLUSIONS:

The ∑PFASs in the atmospheric particles of smog in Beijing are 3.5 times that of sunny days, and the changes of atmospheric particle concentration of different particle sizes show different enrichment ability for each compound of PFASs, among which PFOA, PFOS, PFNA and PFDA middle chain PFASs are enriched more easily.

KEY WORDS: perfluoroalkyl substances, atmospheric particulates, PM2.5, particle size distribution, accumulation capacity

HIGHLIGHTS

(1) The concentration level and particle size distribution characteristics of perfluoroalkyl substances in atmospheric particulate matter in Beijing were investigated.

(2) Particle size distribution characteristics of perfluoroalkyl substances in atmospheric particulate matter in Beijing and other cities were compared.

(3) The effects of atmospheric particulate matter concentration changes in Beijing on the concentration of perfluoroalkyl substances under different sizes were discussed.

本文参考文献

[1]

Kissa E. Fluorinated Surfactants and Repellents (The Second Edition)[M]. New York: Marcel Dekker Inc., 2001.

[2]

Cousins I T, Kong D, Vestergren R, et al. Reconciling mea-surement and modelling studies of the sources and fate of perfluorinated carboxylates[J].Environmental Chemistry, 2011, 8(4): 339-354.

[3]

Shoeib M, Harner T, Vlahos P, et al. Perfluorinated chemicals in the arctic atmosphere[J].Environmental Science & Technology, 2006, 40(24): 7577-7583.

[4]

Ding G, Xue H, Jing Z, et al. Occurrence and distribution of perfluoroalkyl substances(PFASs) in sediments of the Dalian Bay, China[J].Marine Pollution Bulletin, 2018, 127: 285-288. doi: 10.1016/j.marpolbul.2017.12.020

[5]

Wong F, Shoeib M, Katsoyiannis A, et al. Assessing temporal trends and source regions of per-and polyfluoroalkyl substances(PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)[J].Atmospheric Environment, 2018, 172: 65-73. doi: 10.1016/j.atmosenv.2017.10.028

[6]

Guelfo J L, Adamson D T. Evaluation of a national data set for insights into sources, composition, and concentrations of per-and polyfluoroalkyl substances(PFASs) in U.S. drinking water[J].Environmental Pollution, 2018, 236: 505-513. doi: 10.1016/j.envpol.2018.01.066

[7]

Dalahmeh S, Tirgani S, Komakech A J, et al. Per-and polyfluoroalkyl substances (PFASs)in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda[J].Science of the Total Environment, 2018, s631-632: 660-667.

[8]

陈舒, 焦杏春, 盖楠, 等. 中国东部农村地区土壤及水环境中全氟化合物的组成特征和来源初探[J]. 岩矿测试, 2015, 34(5): 579-585.

Chen S, Jiao X X, Gai N, et al. Composition and source of perfluorinated compounds in soil and waters from the rural areas in Eastern China[J]. Rock and Mineral Analysis, 2015, 34(5): 579-585.

[9]

朴海涛, 陈舒, 焦杏春, 等. 大运河丰水期水体中全氟化合物的分布[J]. 中国环境科学, 2016, 36(10): 3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029

Piao H T, Chen S, Jiao X X, et al. Geographical distribution of perfluorinated compounds in waters along the Grand Canal during wet season[J].China Environmental Science, 2016, 36(10): 3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029

[10]

Odabasi M, Cetin B, Bayram A, et al. Persistent organic po-llutants (POPs) on fine and coarse atmospheric particles measured at two (Urban and Industrial) sites[J].Aerosol & Air Quality Research, 2015, 15(5): 1894-1905.

[11]

Zhang X. Particle size distributions of PCDD/Fs and PBDD/Fs in ambient air in a suburban area in Beijing, China[J].Aerosol & Air Quality Research, 2015, 15(5): 1933-1943.

[12]

Dreyer A, Ebinghaus R. Polyfluorinated compounds in ambient air from ship-and land-based measurements inNorthern Germany[J].Atmospheric Environment, 2009, 43(8): 1527-1535. doi: 10.1016/j.atmosenv.2008.11.047

[13]

Genualdi S, Lee S C, Shoeib M, et al. Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers[J].Environmental Science & Technology, 2010, 44(14): 5534-5539.

[14]

Kim S K, Shoeib M, Kim K S, et al. Indoor and outdoor poly-and perfluoroalkyl substances(PFASs) in Korea determined by passive air sampler[J].Environmental Pollution, 2012, 162(5): 144-150.

[15]

Barton C A, Butler L E, Zarzecki C J, et al. Characterizing perfluorooctanoate in ambient air near the fence line of a manufacturing facility:Comparing modeled and monitored values[J].Journal of the Air and Waste Management Association, 2006, 56(1): 48-55. doi: 10.1080/10473289.2006.10464429

[16]

Harada K, Nakanishi S, Sasaki K, et al. Particle size distribution and respiratory deposition estimates of airborne perfluorooctanoate and perfluorooctanesulfonate in Kyoto area, Japan[J].Bulletin of Environmental Contamination & Toxicology, 2006, 76(2): 306-310.

[17]

Dreyer A, Kirchgeorg T, Weinberg I, et al. Particle-size distribution of airborne poly-and perfluorinated alkyl substances[J].Chemosphere, 2015, 129(45): 142-149.

[18]

Ge H, Yamazaki E, Yamashita N, et al. Size specific distribution analysis of perfluoroalkyl substances in atmospheric particulate matter-development of a sampling method and their concentration in meeting room/ambient atmosphere[J].Aerosol & Air Quality Research, 2017, 17: 553-562.

[19]

Taniyasu S, Kannan K, Yeung L W, et al. Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry:Comparison to patterns of long-chain perfluorinated acids (C5-C18)[J].Analytica Chimica Acta, 2008, 619(2): 221-230. doi: 10.1016/j.aca.2008.04.064

[20]

Baolin L, Hong Z, Dan Y, et al. Perfluorinated com-pounds (PFCs) in the atmosphere of Shenzhen, China:Spatial distribution, sources and health risk assessment[J].Chemosphere, 2015, 138: 511-518. doi: 10.1016/j.chemosphere.2015.07.012

[21]

Yao Y, Sun H, Gan Z, et al. A nationwide distribution of per-and polyfluoroalkyl substances (PFASs) in outdoor dust in mainland China from eastern to western areas[J].Environmental Science & Technology, 2016, 50(7): 3676-3685.

[22]

Guo M, Yan L, Xu T, et al. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai[J].Environmental Pollution, 2018, 234: 9-19. doi: 10.1016/j.envpol.2017.10.128

[23]

祝玉杰, 陈来国, 高博, 等. 大气中全氟与多氟有机化合物研究进展[J]. 环境化学, 2015, 34(8): 1396-1407.

Zhu Y J, Chen L G, Gao B, et al. Research advance on per-and poly-fluorinated organic compounds in the atmosphere[J]. Environmental Chemistry, 2015, 34(8): 1396-1407.

[24]

Vestergren R, Cousins I T, Trudel D, et al. Estimating the contribution of precursor compounds in consumer exposure to PFOS and PFOA[J].Chemosphere, 2008, 73(10): 1617-1624. doi: 10.1016/j.chemosphere.2008.08.011

[25]

Schultz M M, Barofsky D F, Field J A, et al. Fluorinated alkyl surfactants[J].Environmental Engineering Science, 2003, 20(5): 487-501. doi: 10.1089/109287503768335959

[26]

Taniyasu S, Yamashita N, Moon H B, et al. Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances?[J].Environment International, 2013, 55(4): 25-32.

[27]

Burns D C, Ellis D A, Li H, et al. Experimental pKa determination for perfluorooctanoic acid (PFOA) and the potential impact of pKa concentration dependence on laboratory-measured partitioning phenomena and environmental modeling[J].Environmental Science & Technology, 2008, 42(24): 9283-9288.

[28]

Cheng J, Psillakis E, Hoffmann M R, et al. Acid dissociation versus molecular association of perfluoroalkyl oxoacids:Environmental implications[J].Journal of Physical Chemistry A, 2009, 113(29): 8152-8156. doi: 10.1021/jp9051352

[29]

Goss K U, Arp H P. Comment on "Experimental pKa determination for perfluorooctanoic acid (PFOA) and the potential impact of pKa concentration dependence on laboratory-measured partitioning phenomena and envrionmental modeling"[J].Environmental Science & Technology, 2009, 43(13): 5152-5154.

[30]

Kutsuna S, Hori H, Sonoda T, et al. Preferential solvation of perfluorooctanoic acid (PFOA) by methanol in methanol-water mixtures:A potential overestimation of the dissociation constant of PFOA using a Yasuda-Shedlovsky plot[J].Atmospheric Environment, 2012, 49(49): 411-414.

[31]

Vierke L, Berger U, Cousins I T, et al. Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport[J].Environmental Science & Technology, 2013, 47(19): 11032-11039.

[32]

Arp H P, Schwarzenbach R P, Goss K U, et al. Ambient gas/particle partitioning.1.Sorption mechanisms ofapolar, polar, and ionizable organic compounds[J].Environmental Science & Technology, 2008, 42(15): 5541-5547.

[33]

Yuan Q, Yang L, Dong C, et al. Particle physical characterisation in the Yellow River Delta of Eastern China:Number size distribution and new particle formation[J].Air Quality Atmosphere & Health, 2015, 8(5): 441-452.

[34]

Guo H, Wang D W, Cheung K, et al. Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong[J]. Atmospheric Chemistry & Physics Discussions, 2012, 12(20): 9923-9939.

[35]

Cheng Y F, Su H, Rose D, et al. Size-resolved measurement of the mixing state of soot in the megacity Beijing, China:Diurnal cycle, aging and parameterization[J]. Atmospheric Chemistry & Physics, 2013, 12(10): 4477-4491.

相似文献(共20条)

[1]

周莉, 石贵勇, 付宇, 关瑶, 陈来国. 广州市大气颗粒物PM2.5显微形貌特征和来源解析. 岩矿测试, 2016, 35(3): 302-309. doi: 10.15898/j.cnki.11-2131/td.2016.03.014

[2]

李燕, 刘江峰, 李晓林, 万天敏, 黄宇营, 何伟, 华魏, 张桂林, 岳伟生. 应用同步辐射微束X射线荧光光谱法研究单个大气PM2.5颗粒物的源特征. 岩矿测试, 2006, 25(3): 206-210.

[3]

赵起越, , 李新中. 大气颗粒物中含碳组分的分析技术. 岩矿测试, 2001, (3): 208-213.

[4]

赵起越, 陈添, 李新中. 燃烧麦秸对大气颗粒物中多环芳烃含量的影响. 岩矿测试, 2003, (4): 273-276.

[5]

刘锋, 王英华, 李显芳, 刘咸德. 大气颗粒物中铅的序列提取与分析表征. 岩矿测试, 2005, (1): 13-18.

[6]

刘金巍, 安彩秀, 王磊, 王芸, 祁春景, 刘庆学. 质谱法测定大气颗粒物中多环芳烃的内标选择和质量控制. 岩矿测试, 2012, 31(2): 325-330.

[7]

马莉, 李玉武. 大气颗粒物样品波长色散X射线荧光光谱法无机元素测量结果不确定度评估. 岩矿测试, 2007, 26(3): 219-224.

[8]

付爱瑞, 陈庆芝, 罗治定, 姜云军, 金倩, 王芸. 碱熔-电感耦合等离子体发射光谱法测定大气颗粒物样品中无机元素. 岩矿测试, 2011, 30(6): 751-755.

[9]

刘咸德, VeerleVanLierde, FrankVanhaecke, 李冰, FreddyCAdams, 董树屏. 中国北京和长岛大气颗粒物中铅的同位素丰度比测定. 岩矿测试, 2005, (1): 7-12.

[10]

祁辉, 张烃, Hélène, Magda, 董树屏, Claeys, 刘咸德, Cachier. 生物质燃烧颗粒物有机示踪化合物的测定和应用. 岩矿测试, 2006, 25(2): 107-113.

[11]

董树屏, , 刘涛. 用扫描电镜技术识别广州市大气颗粒物主要种类. 岩矿测试, 2001, (3): 202-207.

[12]

叶伯明, 何文权. 能量色散X射线荧光光谱分析大气颗粒中多种元素. 岩矿测试, 2002, (4): 301-303.

[13]

吉昂, 郑南, 王河锦, 徐子优, 李国会. 高能偏振能量色散-X射线荧光光谱法测定PM10大气颗粒物的组成. 岩矿测试, 2011, 30(5): 528-535.

[14]

曾凡刚, 彭林, . 兰州市大气总悬浮颗粒物中有机污染物分布特征及来源. 岩矿测试, 2002, (2): 125-128.

[15]

刘裕明, 彭林, 曾凡刚, 陈名樑. 太原市大气总悬浮颗粒物中正构烷烃和多环芳烃空间分布及来源分析. 岩矿测试, 2003, (3): 206-210.

[16]

张雅琳, 李玉武. 等离子体发射光谱法测定大气颗粒物中的无机元素. 岩矿测试, 2000, (1): 63-69.

[17]

王喆, 谭科艳, 陈燕芳, 刘斯文, 朱晓华, 刘久臣, 汤奇峰, 袁欣. 南方某工业区大气总悬浮颗粒物重金属来源解析及其对土壤环境质量的影响. 岩矿测试, 2016, 35(1): 82-89. doi: 10.15898/j.cnki.11-2131/td.2016.01.014

[18]

李北罡, 郭博书. 库布齐沙漠颗粒物中磷的化学形态分析. 岩矿测试, 2007, 26(1): 9-12.

[19]

丁毅, 张烃, 董树屏, 刘咸德, 梁汉东. 应用纤维素示踪北京市PM2.5天然植被排放来源的研究. 岩矿测试, 2013, 32(5): 738-746.

[20]

黄毅, 何淼, 饶竹, 苏劲. GDX-502树脂富集高效液相色谱法测定地表水中酚类化合物. 岩矿测试, 2007, 26(2): 101-104.

计量
  • PDF下载量(4)
  • 文章访问量(121)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

北京市大气颗粒物中全氟烷基化合物的粒径分布特征

杨朔, 陈辉伦, 盖楠, 路国慧, 郑宇, 邵鹏威, 杨永亮