【引用本文】 张建锋, 刘汉彬, 石晓, 等. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究[J]. 岩矿测试, 2019, 38(1): 45-54. doi: 10.15898/j.cnki.11-2131/td.201805170062
ZHANG Jian-feng, LIU Han-bin, SHI Xiao, et al. Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method[J]. Rock and Mineral Analysis, 2019, 38(1): 45-54. doi: 10.15898/j.cnki.11-2131/td.201805170062

五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究

核工业北京地质研究院, 北京 100029

收稿日期: 2018-05-17  修回日期: 2018-08-07  接受日期: 2018-08-10

基金项目: 国家重点研发计划项目“华南热液型铀矿基地深部探测技术示范”(2017YFC0602600);中国核工业集团公司集中研发项目“高分辨微区分析技术研究”(测LTC1605)

作者简介: 张建锋, 高级工程师, 从事同位素地球化学科研工作。E-mail:11675220@qq.com

Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method

Beijing Research Institute of Uranium Geology, Beijing 100029, China

Received Date: 2018-05-17
Revised Date: 2018-08-07
Accepted Date: 2018-08-10

摘要:应用五氟化溴法(BrF5)测定硅酸盐及氧化物矿物的氧同位素组成,试剂纯化、样品预处理、环境湿度、反应器洁净程度以及实验质量控制是影响该法准确度的主要因素。为确定BrF5法最佳实验条件,提高分析精度,本文以国家标准物质为参考,对硅酸盐及氧化物矿物在不同焙烧温度下的氧同位素组成进行分析,并对实验环境湿度和反应器洁净程度对分析数据质量的影响进行了系统研究。实验确定了焙烧温度设置为650~750℃,可去除硅酸盐全岩样品中的炭质成分,避免了温度因素引起的同位素分馏;将实验环境相对湿度降低至50% RH,并在0.5min内完成样品装填,可解决由于水汽造成δ18O值明显偏低的突出问题;对于新使用的反应器,或反应器在使用中有黄色物质脱落、内壁受到污染,及时进行氟化处理和清洗,可避免因氧气产率降低所引起的氧同位素分馏;反应器交替进行样品和标准物质CO2试样的制备,可对样品同位素数据的可靠性进行监测。对国家标准GBW04409的氧同位素组成进行测试,δ18O测试结果与推荐值一致,分析精度优于0.1‰。以上途径有效控制了氧同位素分馏,提高了BrF5氧同位素分析方法的适用性。

关键词: 氧同位素, 硅酸盐及氧化物矿物, 五氟化溴法, 焙烧温度, 相对湿度

要点

(1) 应用五氟化溴法对硅酸盐及氧化物矿物氧同位素组成分析的影响因素进行研究。

(2) 650~750℃为有效去除炭质成分进行硅酸盐氧同位素分析的最佳焙烧温度。

(3) 缩短样品装填时间可以降低环境湿度对氧同位素分析结果的影响。

Study on Influence Factors for Determination of Oxygen Isotopic Composition of Silicates and Oxide Minerals by BrF5 Method

ABSTRACT

BACKGROUND:

Reagent purification, sample pretreatment, environmental humidity, reactor cleanliness and experimental quality control are the main influence factors for determination of oxygen isotopic composition of silicates and oxide minerals by BrF5 method.

OBJECTIVES:

To determine the optimal experimental conditions and improve the accuracy by selecting silicates and oxide minerals as laboratory raw materials for oxygen isotopic composition analysis. To discuss the influence factors for determination of oxygen isotopic composition of silicates and oxide minerals by BrF5 method.

METHODS:

Using BrF5 analysis method and taking standard sample as the reference, oxygen isotopic compositions of silicates and oxide minerals were determined at different calcination temperatures. At the same time, the effects of environmental humidity and reactor cleanliness on the analytical results were also studied.

RESULTS:

The results show that 650-750℃ is the best calcination temperature range for removing carbon components during oxygen isotope analysis, which can avoid the isotope fractionation caused by temperature. By reducing the relative environment humidity or the sample loading time within 0.5min, the lower δ18O values caused by vapor was improved. The new reactor, or the reactor with large yellow substance falling off, or the contaminated reactor will reduce the yield of oxygen and cause oxygen isotope fractionation, so the reactors should be fluorinated or purged in time. The sample and standard material is loaded alternately for each reactor to monitor the reliability of the isotopic composition of the sample. The results of oxygen isotopic composition of GBW04409 are consistent with the recommended values. The relative standard deviation is better than 0.1‰ for δ18O under the optimized conditions.

CONCLUSIONS:

The proposed method can effectively control oxygen isotope fractionation and improve the applicability of BrF5 oxygen isotope analysis method.

KEY WORDS: oxygen isotope, silicates and oxide minerals, BrF5 method, calcination temperature, relative humidity

HIGHLIGHTS

(1) Influence factors for determination of oxygen isotopic composition of silicates and oxide minerals by BrF5 method were studied.

(2) 650-750℃ is the best calcination temperature range for removing carbon components during oxygen isotope analysis.

(3) Shortening the sample loading time can reduce the effect of environmental humidity on oxygen isotope analysis.

本文参考文献

[1]

Taylor H P. The oxygen isotope geochemistry of igneous rocks[J].Contribution to Mineralogy and Petrology, 1968, 19: 1-71. doi: 10.1007/BF00371729

[2]

李铁军. 氧同位素在岩石成因研究的新进展[J]. 岩矿测试, 2013, 32(6): 841-849. doi: 10.3969/j.issn.0254-5357.2013.06.002

Li T J. Progress in the application of oxygen isotopes in the study of petrogenesis[J]. Rock and Mineral Analysis, 2013, 32(6): 841-849. doi: 10.3969/j.issn.0254-5357.2013.06.002

[3]

Clayton R N, Mayeda T K. The use of bromine pentafluo-ride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta, 1963, 27: 43-52. doi: 10.1016/0016-7037(63)90071-1

[4]

Clayton R N.High Temperature Isotope Effects in the Early Solar System[M]//Valley J W, eds.Stable Isotopes in High Temperature Geological Processes.Review in Mineralogy and Geochemistry, 1986, 16: 129-139.

[5]

Clayton R N, Mayeda T K, Epstein S.Isotopic Fractiona-tion of Silicon in Allende Inclusions[C]//Proceedings of the 9th Lunar and Planetary Science Conference.Houston, 1978: 1267-1278.

[6]

丁悌平, 万德芳, 李金城, 等. 硅同位素测量方法及其地质应用[J]. 矿床地质, 1988, 7(4): 90-95.

Ding T P, Wan D F, Li J C, et al. The analytic method of silicon isotopes and its geological application[J]. Mineral Deposits, 1988, 7(4): 90-95.

[7]

李延河,万德芳,张国柄. 氧化物、硅酸盐矿物的氧同位素分析方法——BrF5法[M] . 北京: 北京科学技术出版社, 1992: 37-43.

Li Y H,Wan D F,Zhang G B. A Study on BrF5Method of Oxygen Isotope Analyses of Oxides and Silicates[M] . Beijing: Beijing Science and Technology Publishing House, 1992: 37-43.
[8]

万德芳, 李延河. 硫酸盐的氧同位素测量方法[J]. 高校地质学报, 2006, 12(3): 378-383. doi: 10.3969/j.issn.1006-7493.2006.03.010

Wan D F, Li Y H. Analytical method of oxygen isotope composition in sulphates[J].Geological Journal of China Universitys, 2006, 12(3): 378-383. doi: 10.3969/j.issn.1006-7493.2006.03.010

[9]

秦燕, 李延河, 刘锋, 等. 新疆吐-哈地区硝酸盐矿床的氧同位素非质量效应[J]. 地球学报, 2008, 29(6): 729-734. doi: 10.3321/j.issn:1006-3021.2008.06.011

Qin Y, Li Y H, Liu F, et al. Mass independent oxygen isotope fractionation in nitrate deposits of the Turpan-Hami area, Xinjiang[J].Acta Geoscientica Sinica, 2008, 29(6): 729-734. doi: 10.3321/j.issn:1006-3021.2008.06.011

[10]

Sharp Z D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides[J].Geochimica et Cosmochimica Acta, 1990, 54(5): 1353-1357. doi: 10.1016/0016-7037(90)90160-M

[11]

Sharp Z D. In situ laser microprobe techniques for stable isotope analysis[J].Chemical Geology (Isotope Geoscience Section), 1992, 101: 3-19. doi: 10.1016/0009-2541(92)90199-F

[12]

肖益林, 傅斌, 郑永飞, 等. 激光探针分析在氧同位素地球化学研究中的应用[J]. 地学前缘, 1998, 5(1-2): 283-294.

Xiao Y L, Fu B, Zheng Y F, et al. Applications of laserprobe method to oxygen isotope geochemistry[J]. Earth Science Frontiers, 1998, 5(1-2): 283-294.

[13]

龚冰, 郑永飞, 赵子福, 等. 硅酸盐和金属氧化物矿物氧同位素组成的CO2激光氟化分析[J]. 矿物岩石地球化学通报, 2001, 20(4): 428-430. doi: 10.3969/j.issn.1007-2802.2001.04.063

Gong B, Zheng Y F, Zhao Z F, et al. Oxygen isotope analysis of silicate and metal oxide minerals by CO2 laser fluorination[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 428-430. doi: 10.3969/j.issn.1007-2802.2001.04.063

[14]

龚冰, 郑永飞. 硅酸盐矿物氧同位素组成的激光分析[J]. 地学前缘, 2003, 10(2): 279-286. doi: 10.3321/j.issn:1005-2321.2003.02.003

Gong B, Zheng Y F. A CO2-laser technique for oxygen isotope analysis of silicates[J].Earth Science Frontiers, 2003, 10(2): 279-286. doi: 10.3321/j.issn:1005-2321.2003.02.003

[15]

高建飞, 丁悌平. 激光熔蚀微量氧同位素分析方法及其地质应用[J]. 地质论评, 2007, 54(1): 139-144.

Gao J F, Ding T P. Laser microprobe oxygen isotope analysis method and geology applications[J]. Geological Review, 2007, 54(1): 139-144.

[16]

刘熙, 邓文峰, 魏静娴, 等. 利用激光氟化系统分析硅酸盐矿物的三氧同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 448-453. doi: 10.3969/j.issn.1007-2802.2016.03.006

Liu X, Deng W F, Wei J X, et al. Analysis of triple oxygen isotopic compositions of silicate minerals by using laser fluorination system[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 448-453. doi: 10.3969/j.issn.1007-2802.2016.03.006

[17]

Johnson W D.Method and Apparatus for Laser Pest Con-trol[P].United States, 5915949[1994-06-29].

[18]

郑永飞,陈江峰. 稳定同位素地球化学[M] . 北京: 科学出版社, 2000

Zheng Y F,Chen J F. Stale Isotope Geochemistry[M] . Beijing: Science Press, 2000
[19]

Elsenheimer D, Valley J W. In situ oxygen isotope analy-sis of feldspar and quartz by Nd:YAG laser microprobe[J].Chemical Geology:Isotope Geoscience Section, 1992, 101(1-2): 21-42. doi: 10.1016/0009-2541(92)90200-O

[20]

Wiechert U, Fiebig J. Excimer laser isotope-ratio-monito-ring mass spectrometry for in situ oxygen isotope analysis[J].Chemical Geology, 2002, 182(2-4): 179-194. doi: 10.1016/S0009-2541(01)00287-X

[21]

Valley J W, Kinny P D, Schulze D J, et al. Zircon mega-crysts from kimberlite:Oxygen isotope variability among mantle melts[J].Contributions to Mineralogy and Petrology, 1998, 133(1-2): 1-11. doi: 10.1007/s004100050432

[22]

丁悌平. 稳定同位素测试技术与参考物质研究现状及发展前景[J]. 岩矿测试, 2002, 21(4): 291-300. doi: 10.3969/j.issn.0254-5357.2002.04.011

Ding T P. Present status and prospect of analytical techniques and reference materials for stable isotopes[J]. Rock and Mineral analysis, 2002, 21(4): 291-300. doi: 10.3969/j.issn.0254-5357.2002.04.011

[23]

郑淑慧,郑斯成,莫志超. 稳定同位素地球化学分析[M] . 北京: 北京大学出版社, 1986: 194-216.

Zheng S H,Zheng S C,Mo Z C. Stable Isotope Analyses of Geochemistry[M] . Beijing: Peking University Press, 1986: 194-216.
[24]

石晓, 刘汉彬, 张建锋, 等. BrF5法分析难熔矿物氧同位素组成的反应温度探讨[J]. 世界核地质科学, 2018, 35(1): 52-59. doi: 10.3969/j.issn.1672-0636.2018.01.008

Shi X, Liu H B, Zhang J F, et al. Study on reaction temperature of oxygen isotopes composition of refractory minerals using BrF5method[J].World Nuclear Geoscience, 2018, 35(1): 52-59. doi: 10.3969/j.issn.1672-0636.2018.01.008

[25]

袁维玲, 潘飞云. 氧同位素分析方法——BrF5法的实验研究[J]. 矿产与地质, 1996, 10(5): 356-361.

Yuan W L, Pan F Y. Experiment study of BrF5 method-An analysis method of oxygen isotope[J]. Mineral Resources and Geology, 1996, 10(5): 356-361.

[26]

丁悌平, 黎红, 张国柄, 等. 六氟化硫法测量33S/32S、34S/32S和36S/32S的方法研究[J]. 矿床地质, 1987, 6(4): 81-93.

Ding T P, Li H, Zhang G B, et al. A study on determining 33S/32S, 34S/32S and 36S/32S by SF6 method[J]. Mineral Deposits, 1987, 6(4): 81-93.

[27]

丁悌平,蒋少涌,万德芳. 硅同位素地球化学[M] . 北京: 地质出版社, 1994: 9-12.

Ding T P,Jiang S Y,Wan D F. Silicon Isotope Geochemistry[M] . Beijing: Geological Publishing House, 1994: 9-12.

相似文献(共20条)

[1]

杜广鹏, 王旭, 张福松. GasBench Ⅱ顶空瓶内空气背景对<100 μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探. 岩矿测试, 2010, 29(6): 631-638.

[2]

杨会, 唐伟, 吴夏, 王华, 应启和, 涂林玲. Kiel Ⅳ-IRMS双路在线分析微量碳酸盐的碳氧同位素. 岩矿测试, 2014, 33(4): 480-485.

[3]

蓝高勇, 吴夏, 杨会, 唐伟, 应启和, 王华. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究. 岩矿测试, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049

[4]

朱园园, 邱海鸥, 杜永, 汤志勇, 帅琴, 宋虎跃. 应用GasBench Ⅱ-IRMS优化碳氧同位素分析方法. 岩矿测试, 2014, 33(6): 789-794.

[5]

李铁军. 氧同位素在岩石成因研究的新进展. 岩矿测试, 2013, 32(6): 841-849.

[6]

金贵善, 刘汉彬, 韩娟, 李军杰, 张建锋, 张佳, 石晓. 镀镍碳为还原剂在线高温裂解法测定硫酸钡中氧同位素组成. 岩矿测试, 2019, 38(4): 365-372. doi: 10.15898/j.cnki.11-2131/td.201809090103

[7]

张琳, 陈宗宇, 刘福亮, 贾艳琨, 张向阳, 陈立. 水中氢氧同位素不同分析方法的对比. 岩矿测试, 2011, 30(2): 160-163.

[8]

王连和, 王国伟, 张耀春, 李东雷, 刘玺祥, 姜东民. 从含镍废触媒中回收镍的工艺实验. 岩矿测试, 2003, (2): 124-128.

[9]

张东, 李玉红, 张鸿禹, 郝伟博, 晏文荣, 杨伟, 贾保军. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价. 岩矿测试, 2019, 38(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201804100040

[10]

刘敬秀. 硅酸盐氧同位素标样研制. 岩矿测试, 1990, (4): 276-282.

[11]

吴静淑, 罗续荣. 制备碳、氧同位素样品的磷酸——加热300℃脱水法. 岩矿测试, 1987, (1): 73-74.

[12]

陈成业, 刘本立. 大红山古火山口的碳酸盐围岩的氧和碳同位素研究. 岩矿测试, 1982, (4): 1-5.

[13]

崔文元, 强德美, 王时麒, 郑淑蕙. 卓资—阳高一带区域变质岩中共生矿物氧同位素的研究. 岩矿测试, 1982, (3): 9-14.

[14]

孙宝山, 黄萱, 潘均, 张任祜. 硅酸盐中钐、钕同位素稀释测定提取方法研究. 岩矿测试, 1983, (3): 216-218.

[15]

凌进中. 偶氮硝膦-Ⅰ分光光度法快速测定硅酸盐岩石矿物中的氧化镁. 岩矿测试, 1987, (2): 92-94.

[16]

查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定. 岩矿测试, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

[17]

戈廼锷, 许国镇. 电位滴定测定石煤焙烧物及其浸出液中三价、四价和五价钒. 岩矿测试, 1983, (2): 130-132.

[18]

徐丽, 邢蓝田, 王鑫, 李中平, 毛俊丽. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定. 岩矿测试, 2018, 37(1): 15-20. doi: 10.15898/j.cnki.11-2131/td.201701130005

[19]

陈宇峰, 郑秀丽, 李晶, 贺行良, 刘昌岭, 孟庆国, 秦德谛, 张培玉. 渤海沉积物中甲烷氧化速率及同位素分馏规律研究. 岩矿测试, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117

[20]

马瑞杰, 刘晓端, 李欣, 徐清. 水库有机污染物生化需氧量-溶解氧和温度的耦合模型研究与应用. 岩矿测试, 2005, (2): 105-108.

计量
  • PDF下载量(25)
  • 文章访问量(113)
  • HTML全文浏览量(50)
  • 被引次数(0)
目录

Figures And Tables

五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究

张建锋, 刘汉彬, 石晓, 金贵善, 李军杰, 张佳, 韩娟, 郭东侨, 钟芳文