【引用本文】 史凯, 朱建明, 吴广亮, 等. 地质样品中高精度铬同位素分析纯化技术研究进展[J]. 岩矿测试, 2019, 38(3): 341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059
SHI Kai, ZHU Jian-ming, WU Guang-liang, et al. A Review on the Progress of Purification Techniques for High Precision Determination of Cr Isotopes in Geological Samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341-353. doi: 10.15898/j.cnki.11-2131/td.201805130059

地质样品中高精度铬同位素分析纯化技术研究进展

1. 

中国地质大学(北京)地质过程与矿产资源国家重点实验室, 北京 100083

2. 

中国科学院地球化学研究所环境地球化学国家重点实验室, 贵州 贵阳 550081

收稿日期: 2018-05-13  修回日期: 2018-12-13  接受日期: 2019-04-09

基金项目: 国家自然科学基金项目(41473028,U1612441)

作者简介: 史凯, 博士研究生, 助理研究员, 主要研究方向:非传统稳定同位素地球化学。E-mail:shikai@cugb.edu.cn

通信作者: 朱建明, 博士, 教授, 主要研究方向:非传统稳定同位素与环境地球化学。E-mail:jmzhu@cugb.edu.cn

A Review on the Progress of Purification Techniques for High Precision Determination of Cr Isotopes in Geological Samples

1. 

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience(Beijing), Beijing 100083, China

2. 

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Corresponding author: ZHU Jian-ming, jmzhu@cugb.edu.cn

Received Date: 2018-05-13
Revised Date: 2018-12-13
Accepted Date: 2019-04-09

摘要:随着多接收器热电离质谱仪(MC-TIMS)和多接收器电感耦合等离子体质谱仪(MC-ICP-MS)的发展,高精度铬(Cr)同位素测试已成为可能。铬同位素在地球、环境、农业生态和宇宙化学等科学领域中已显示出良好的应用潜力。然而,样品的纯化分离、干扰和仪器质量分馏的校正,依然是制约铬同位素高精度测试的重要因素。本文在近年来铬同位素分析技术最新进展的基础上,结合本课题组已有的研究,对陨石、地质和环境等各类样品中铬同位素的分离纯化方法、MC-ICP-MS测试中干扰与质量歧视校正等进行了详细综述。本文认为,阴阳离子树脂交换联用与过硫酸钾等强氧化剂的结合,可以进行低铬高基质样品的有效纯化,是一种较为普适性的纯化方法。使用铬同位素双稀释剂校正质量歧视效应,在MC-ICP-MS的中高分辨与静态测量模式下,不仅可以有效分开多原子离子的干扰,而且也可以进行高精度铬同位素分析,其δ53/52Cr的分析精度与TIMS相当,可以达到0.04‰(2SD),且最低测试浓度可低至10ng,能够实现超微量铬的同位素分析。

关键词: 铬同位素, 分离纯化, 低铬含量样品, 多接收器热电离质谱, 多接收器电感耦合等离子体质谱

要点

(1) 总结了当前铬同位素分析技术的最新进展。

(2) 比较了各种铬纯化方案的优缺点。

(3) 提出了灵活和普适性铬纯化方案研发的途径。

A Review on the Progress of Purification Techniques for High Precision Determination of Cr Isotopes in Geological Samples

ABSTRACT

BACKGROUND:

With the development of Multi-collector Thermal Ionization Mass Spectrometry (MC-TIMS) and Multi-collector Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS), Cr isotopes had been successfully measured at a high resolution. Chromium isotopes have shown good application potential in the fields of environmental geochemistry, agroecology and cosmochemistry. However, sample purification and interference correction are still the main factors that suppress the high-resolution measurement of Cr isotopes. The development of a high-recovery, universal and efficient separation and purification method is an urgent problem to be solved.

OBJECTIVES:

To discuss the purification of Cr isotopes in geological and environmental samples, interference and mass discrimination correction during measurement of MC-ICP-MS.

METHODS:

This study compared and analyzed the current chemical separation and purification methods and main instrumental analysis techniques commonly used for chromium isotopes (e.g. MC-ICP-MS), and discussed the current mainstream quality discrimination correction methods. The combination of anion and cation exchange resin with strong oxidants such as K2S2O8 can effectively separate Cr from low Cr samples with high matrix contents, which is a more universal purification method. Medium-high resolution and static measurement mode was used during MC-ICP-MS analysis and Cr isotopes double spike method to correct mass discrimination effect.

RESULTS:

The analytical precision of δ53/52Cr was 0.04‰ (2SD), similar to that of TIMS. Moreover, the minimum analytical sample was 10ng, thus isotope analysis of ultra-micro chromium can be achieved.

CONCLUSIONS:

The proposed method cannot only separate the polyatomic ion interference, but can also perform high-precision Cr isotope analysis. It is necessary to reduce the process blank, remove the interfering elements and completely separate the different forms of chromium.

KEY WORDS: Cr isotopes, purification schemes, low Cr samples, Multi-collector Thermal Ionization Mass Spectrometry, Multi-collector Inductively Coupled Plasma-Mass Spectrometry

HIGHLIGHTS

(1) The recent advances in Cr isotope analytical techniques were summarized.

(2) The advantages and disadvantages of different Cr purification methods were compared.

(3) A solution for developing a flexible and universal purification method for Cr isotopes was proposed.

本文参考文献

[1]

Ellis A S, Johnson T M, Bullen T D, et al. Chromium isotopes and the fate of hexavalent chromium in the environment[J].Science, 2002, 295(5562): 2060-2062. doi: 10.1126/science.1068368

[2]

Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J].Nature, 2009, 461(7261): 250-253. doi: 10.1038/nature08266

[3]

Unceta N, Séby F, Malherbe J, et al. Chromium speciation in solid matrices and regulation:A review[J]. Analytical & Bioanalytical Chemistry, 2010, 397(3): 1097-1111.

[4]

Birck J L, Allègre C J. Manganese-chromium isotope systematics and the development of the early Solar system[J].Nature, 1988, 331(6157): 579-584. doi: 10.1038/331579a0

[5]

Lugmair G W, Shukolyukov A. Early Solar system timescales according to 53Mn-53Cr systematics[J].Geochimica et Cosmochimica Acta, 1998, 62(16): 2863-2886. doi: 10.1016/S0016-7037(98)00189-6

[6]

Moynier F, Yin Q Z, Schauble E, et al. Isotopic evidence of Cr partitioning into Earth's core[J].Science, 2011, 331(6023): 1417-1420. doi: 10.1126/science.1199597

[7]

Bonnand P, Williams H M, Parkinson I J, et al. Stable chromium isotopic composition of meteorites and metal-silicate experiments:Implications for fractionation during core formation[J]. Earth & Planetary Science Letters, 2016, 435(1): 14-21.

[8]

Berry A J, O'Neill H S C, Scott D R, et al. The effect of composition on Cr2+/Cr3+ in silicate melts[J].American Mineralogist, 2006, 91(11-12): 1901-1908. doi: 10.2138/am.2006.2097

[9]

Larsen K K, Wielandt D, Schiller M, et al. Chromatographic speciation of Cr(Ⅲ)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J].Journal of Chromatography A, 2016, 1443: 162-174. doi: 10.1016/j.chroma.2016.03.040

[10]

Schauble E, Rossman G R, Jr H P T, et al. Theoretical estimates of equilibrium chromium-isotope fractionations[J].Chemical Geology, 2004, 205(1-2): 99-114. doi: 10.1016/j.chemgeo.2003.12.015

[11]

Kotaś J, Stasicka Z. Chromium occurrence in the envir-onment and methods of its speciation[J].Environmental Pollution, 2000, 107(3): 263-283. doi: 10.1016/S0269-7491(99)00168-2

[12]

Bonnand P, James R H, Parkinson I J, et al. The chromium isotopic composition of seawater and marine carbonates[J]. Earth & Planetary Science Letters, 2013, 382(6): 10-20.

[13]

Berger A, Frei R. The fate of chromium during tropical weathering:A laterite profile from Central Madagascar[J]. Geoderma, 2014, 213(1): 521-532.

[14]

Saad E M, Wang X L, lanavsky N J, et al. Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution[J].Nature Communications, 2017, . doi: 10.1038/s41467-017-01694-y

[15]

赵堃, 柴立元, 王云燕, 等. 水环境中铬的存在形态及迁移转化规律[J]. 工业安全与环保, 2006, 32(8): 1-3. doi: 10.3969/j.issn.1001-425X.2006.08.001

Zhao K, Chai L Y, Wang Y Y, et al. The existing form, migration and transformation laws of Cr in water environment[J].Industrial Safety and Environmental Protection, 2006, 32(8): 1-3. doi: 10.3969/j.issn.1001-425X.2006.08.001

[16]

Zink S, Schoenberg R, Staubwasser M, et al. Isotopic fractionation and reaction kinetics between Cr(Ⅲ) and Cr(Ⅵ) in aqueous media[J].Geochimica et Cosmochimica Acta, 2010, 74(20): 5729-5745. doi: 10.1016/j.gca.2010.07.015

[17]

Rossman K J R, Taylor P D P. Isotopic composition of the elements 1997[J].Pure and Applied Chemistry, 1998, 70: 217-236. doi: 10.1351/pac199870010217

[18]

Ball J W, Bassett R L. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis[J].Chemical Geology, 2000, 168(1-2): 123-134. doi: 10.1016/S0009-2541(00)00189-3

[19]

Frei R, Rosing M T. Search for traces of the late heavy bombardment on Earth-Results from high precision chromium isotopes[J]. Earth & Planetary Science Letters, 2005, 236(1): 28-40.

[20]

Farkas J, Chrastny V, Novak M, et al. Chromium isotope variations (delta Cr-53/52) in mantle-derived sources and their weathering products:Implications for environmental studies and the evolution of delta Cr-53/52 in the Earth's mantle over geologic time[J].Geochimica et Cosmochimica Acta, 2013, 123: 74-92. doi: 10.1016/j.gca.2013.08.016

[21]

Economou-Eliopoulos M, Frei R, Atsarou C, et al. Application of chromium stable isotopes to the evaluation of Cr(Ⅵ) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece)[J]. Catena, 2014, 122(10): 216-228.

[22]

Trinquier A, Birck J L, Allègre C J, et al. High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2008, 23(12): 1565-1574. doi: 10.1039/b809755k

[23]

Schoenberg R, Zink S, Staubwasser M, et al. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS[J].Chemical Geology, 2008, 249(3-4): 294-306. doi: 10.1016/j.chemgeo.2008.01.009

[24]

Yamakawa A, Yamashita K, Makishima A, et al. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry[J].Analytical Chemistry, 2009, 81(23): 9787-9794. doi: 10.1021/ac901762a

[25]

Qin L, Alexander C M O, Carlson R W, et al. Contributors to chromium isotope variation of meteorites[J].Geochimica et Cosmochimica Acta, 2010, 74(3): 1122-1145. doi: 10.1016/j.gca.2009.11.005

[26]

Døssing L N, Dideriksen K, Stipp S L S, et al. Reduction of hexavalent chromium by ferrous iron:A process of chromium isotope fractionation and its relevance to natural environments[J].Chemical Geology, 2011, 285(1-4): 157-166. doi: 10.1016/j.chemgeo.2011.04.005

[27]

Bonnand P, Parkinson I J, James R H, et al. Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2011, 26(3): 528-535. doi: 10.1039/c0ja00167h

[28]

Jamieson-Hanes J H, Gibson B D, Lindsay M B, et al. Chromium isotope fractionation during reduction of Cr(Ⅵ) under saturated flow conditions[J]. Environmental Science & Technology, 2012, 46(12): 6783-6789.

[29]

Kitchen J W, Johnson T M, Bullen T D, et al. Chromium isotope fractionation factors for reduction of Cr(Ⅵ) by aqueous Fe(Ⅱ) and organic molecules[J]. Geochimica et Cosmochimica Acta, 2012, 89(4): 190-201.

[30]

Schiller M, Kooten E V, Holst J C, et al. Precise mea-surement of chromium isotopes by MC-ICPMS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1406-1416. doi: 10.1039/C4JA00018H

[31]

Rodler A, Sánchez-Pastor N, Fernández-Díaz L, et al. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate:Implications for their use as paleoclimatic proxy[J]. Geochimica et Cosmochimica Acta, 2015, 164(4): 221-235.

[32]

Wang X L, Johnson T M, Ellis A S, et al. Equilibrium isotopic fractionation and isotopic exchange kinetics between Cr(Ⅲ) and Cr(Ⅵ)[J].Geochimica et Cosmochimica Acta, 2015, 153: 72-90. doi: 10.1016/j.gca.2015.01.003

[33]

Davies C M.Determination of Distribution Coefficients for Cation Exchange Resin and Optimisation of Ion Exchange Chromatography for Chromium Separation for Geological Materials[D].Manchester: University of Manchester, 2012: 102.

[34]

Li C F, Feng L J, Wang X C, et al. Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J].Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2375-2383. doi: 10.1039/C6JA00265J

[35]

Zhu J M, Wu G, Wang X, et al. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2018, 33: 809-821. doi: 10.1039/C8JA00033F

[36]

Shields W R, Murphy T J, Catanzaro E J, et al. Absolute isotopic abundance ratios and atomic weight of a reference sample of chromium[J].Journal of Research of the National Bureau, 1966, 70: 193-197.

[37]

Lee T, Tera F. The meteoritic chromium isotopic compo-sition and limits for radioactive 53Mn in the early Solar system[J].Geochimica et Cosmochimica Acta, 1986, 50(2): 199-206. doi: 10.1016/0016-7037(86)90169-9

[38]

Ellis A S, Johnson T M, Bullen T D, et al. Using chromium stable isotope ratios to quantify Cr(Ⅵ) reduction:Lack of sorption effects[J]. Environmental Science & Technology, 2004, 38(13): 3604-3607.

[39]

Fantle M S, Bullen T D. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry[J]. Chemical Geology, 2009, 258(1): 50-64.

[40]

秦礼萍.铬同位素分析技术与应用[C]//全国同位素地质新技术新方法与应用学术讨论会.北京: 中国地质学会同位素地质专业委员会, 2012.

Qin L P.Analysis Technology and Application of Chromium Isotope[C]//National Symposium on New Technologies and Methods for Isotope Geology.Beijing: Isotope Geology Committee, Geological Society of China, 2012.

[41]

Sikora E R, Johnson T M, Bullen T D, et al. Microbial mass-dependent fractionation of chromium isotopes[J].Geochimica et Cosmochimica Acta, 2008, 72(15): 3631-3641. doi: 10.1016/j.gca.2008.05.051

[42]

Schoenberg R, Merdian A, Holmden C, et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J].Geochimica et Cosmochimica Acta, 2016, 183: 14-30. doi: 10.1016/j.gca.2016.03.013

[43]

Bonnand P, Parkinson I J, Anand M, et al. Mass dependent fractionation of stable chromium isotopes in mare basalts:Implications for the formation and the differentiation of the Moon[J]. Geochimica et Cosmochimica Acta, 2016, 175(20): 208-221.

[44]

Wang X L, Planavsky N J, Hull P M, et al. Chromium isotopic composition of core-top planktonic foraminifera[J]. Geobiology, 2016, : 1-14.

[45]

Woodhead J D, Hergt J M. Application of the 'double spike' technique to Pb-isotope geochronology[J].Chemical Geology, 1997, 138(3-4): 311-321. doi: 10.1016/S0009-2541(97)00013-2

[46]

Habfast K. Fractionation correction and multiple collectors in thermal ionization isotope ratio mass spectrometry[J]. International Journal of Mass Spectrometry, 1998, 176(1): 133-148.

[47]

袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356-363.

Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363.

[48]

Albarede F, Beard B. Analytical methods for nontraditional isotopes[J].Reviews in Mineralogy & Geochemistry, 2004, 55(1): 113-152.

[49]

Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth & Planetary Science Letters, 2002, 200(1-2): 47-62.

[50]

Halicz L, Yang L, Teplyakov N, et al. High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2008, 23(12): 1622-1627. doi: 10.1039/b808351g

[51]

Maréchal C N, Télouk P, Albarède F, et al. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J].Chemical Geology, 1999, 156(1-4): 251-273. doi: 10.1016/S0009-2541(98)00191-0

[52]

唐索寒, 朱祥坤, 李津, 等. 用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制[J]. 岩矿测试, 2016, 35(2): 127-133.

Tang S H, Zhu X K, Li J, et al. New standard solutions for measurement of iron, copper and zinc isotopic compositions by multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(2): 127-133.

[53]

唐索寒, 闫斌, 朱祥坤, 等. 玄武岩标准样品铁铜锌同位素组成[J]. 岩矿测试, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

Tang S H, Yan B, Zhu X K, et al. Iron, copper and zinc isotopic compositions of basaltic standard reference materials[J]. Rock and Mineral Analysis, 2012, 31(2): 218-224. doi: 10.3969/j.issn.0254-5357.2012.02.004

[54]

White W M, Albarède F, Télouk P, et al. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS[J]. Chemical Geology, 2000, 167(3): 257-270.

[55]

孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339-348.

Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339-348.

[56]

Woodland S, Rehkämper M, Lee D C, et al.High Pre-cision MC-ICPMS Measurement of Silver Isotopic Compositions[M]//Holland J G, Tanner S D.Plasma Source Mass Spectrometry: Applications and Emerging Technologies.Cambridge: Royal Society of Chemistry, 2003.

[57]

Siebert C, Nägler T F, Kramers J D, et al. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(7): 2000GC00124.

[58]

Rudge J F, Reynolds B C, Bourdon B, et al. The double spike toolbox[J].Chemical Geology, 2009, 265(3-4): 420-431. doi: 10.1016/j.chemgeo.2009.05.010

[59]

李津, 朱祥坤, 唐索寒, 等. 双稀释剂法在非传统稳定同位素测定中的应用——以钼同位素为例[J]. 岩矿测试, 2011, 30(2): 138-143. doi: 10.3969/j.issn.0254-5357.2011.02.003

LI J, Zhu X K, Tang S H, et al. The application of double spike in non-traditional stable isotopes-A case study on Mo isotopes[J]. Rock and Mineral Analysis, 2011, 30(2): 138-143. doi: 10.3969/j.issn.0254-5357.2011.02.003

[60]

Ball J W, Izbicki J A. Occurrence of hexavalent chromium in ground water in the Western Mojave Desert, California[J].Applied Geochemistry, 2004, 19: 1123-1135. doi: 10.1016/j.apgeochem.2004.01.011

[61]

朱建明, 谭德灿, 王静, 等. 同位素双稀释剂技术的数值模拟与应用[J]. 岩石学报, 2017, 34(2): 503-512.

Zhu J M, Tan D C, Wang J, et al. The numerical optimization of isotope double spike and its applications[J]. Acta Petrologica Sinica, 2017, 34(2): 503-512.

[62]

Pérez-Fodich A, Reich M, Álvarez F, et al. Climate change and tectonic uplift triggered the formation of the Atacama Desert's giant nitrate deposits[J].Geology, 2014, 42(3): 251-254. doi: 10.1130/G34969.1

相似文献(共20条)

[1]

Belshaw, Nick. 多接收器电感耦合等离子体质谱的新应用. 岩矿测试, 2007, 26(1): 55-60.

[2]

梁细荣 李杰 漆亮 马金龙. 多接收器等离子体质谱精确测定铼含量及其同位素丰度. 岩矿测试, 2005, (1): 1-6.

[3]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[4]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[5]

唐索寒, 朱祥坤, 李津, 闫斌, 李世珍, 李志红, 王跃, 孙剑. 用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制. 岩矿测试, 2016, 35(2): 127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003

[6]

高博, 梁细荣, 刘颖, 胡光黔, 曾文, 涂湘林. 多接收器电感耦合等离子体质谱法测定镉标准溶液中镉的同位素组成. 岩矿测试, 2008, 27(5): 321-324.

[7]

赵悦, 侯可军, 田世洪, 杨丹, 苏嫒娜. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究. 岩矿测试, 2015, 34(1): 28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

[8]

袁永海, 杨锋, 余红霞, 刘希军, 许继峰. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成. 岩矿测试, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

[9]

戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究. 岩矿测试, 2012, 31(1): 95-102.

[10]

尹明, , 吕元琦. 流动注射在线分离预浓集—同位素稀释—电感耦合等离子体质谱测定地质样品中的铕. 岩矿测试, 2002, (2): 93-99.

[11]

张彦, 陈文, 胡明月. 非稀释剂法电感耦合等离子体质谱测定磷灰石中铀钍钐同位素的含量. 岩矿测试, 2011, 30(6): 727-731.

[12]

吴福元, 张宏福, 杨岳衡, 谢烈文. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展. 岩矿测试, 2006, 25(2): 151-158.

[13]

李欣尉, 杨显德, 李超, 周利敏, 赵鸿. 蒸馏法富集纯化Os实验条件研究及其在负离子热电离质谱测量中的应用. 岩矿测试, 2018, 37(4): 439-447. doi: 10.15898/j.cnki.11-2131/td.201805020054

[14]

刘颖, 韦刚健, 梁细荣, 李献华. 多收集器等离子体质谱快速精确测定钕同位素比值. 岩矿测试, 2002, (4): 247-251.

[15]

李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟. 应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成. 岩矿测试, 2016, 35(3): 229-235. doi: 10.15898/j.cnki.11-2131/td.2016.03.003

[16]

富云莲. ^40Ar/^39Ar定年中干扰同位素的质谱校正与低温分离技术. 岩矿测试, 1993, (2): 122-127.

[17]

杜安道, 孙亚莉. 等离子体质谱铼—锇同位素测年法研究及其应用. 岩矿测试, 1996, (4): 263-267.

[18]

柴之芳, 周瑶琪. 离子质谱计测定地质样品中镁同位素组成方法学研究. 岩矿测试, 1995, (1): 7-14.

[19]

李超, 杨雪, 赵鸿, 周利敏, 杜安道, 李欣尉, 屈文俊. pg-ng级Os同位素热表面电离质谱高精度分析测试技术. 岩矿测试, 2015, 34(4): 392-398. doi: 10.15898/j.cnki.11-2131/td.2015.04.003

[20]

李月芳 姚檀栋 王宁练 唐富荣. 电感耦合等离子体质谱直接测定冰芯样品中痕量铅. 岩矿测试, 2001, (1): 11-.

计量
  • PDF下载量(11)
  • 文章访问量(53)
  • HTML全文浏览量(5)
  • 被引次数(0)
目录

Figures And Tables

地质样品中高精度铬同位素分析纯化技术研究进展

史凯, 朱建明, 吴广亮, 王静, 曾理