【引用本文】 刘金巍, 刘雪松, 边超, 等. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒[J]. 岩矿测试, 2019, 38(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201804200049
LIU Jin-wei, LIU Xue-song, BIAN Chao, et al. Determination of Trace Selenium in Groundwater by DRC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201804200049

甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒

中国地质调查局水文地质环境地质调查中心, 河北 保定 071051

收稿日期: 2018-04-20  修回日期: 2018-07-16  接受日期: 2018-08-10

基金项目: 中国地质调查局地质调查工作项目(DD20179303)

作者简介: 刘金巍, 高级工程师, 从事水质分析测试工作。E-mail:gcmsd@sina.com

Determination of Trace Selenium in Groundwater by DRC-ICP-MS

Center of Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China

Received Date: 2018-04-20
Revised Date: 2018-07-16
Accepted Date: 2018-08-10

摘要:地下水中的硒含量一般低于1μg/L,大量氯离子等形成的多原子离子干扰和较低的电离程度,严重影响常规模式ICP-MS测定地下水中痕量硒的准确性,且检出限难以满足实际需要。本文建立了应用动态反应池电感耦合等离子体质谱(DRC-ICP-MS)技术测定地下水中痕量硒的方法,采用乙醇为增感剂,甲烷为反应气,通过实验优化了甲烷流量、乙醇含量、雾化气流速、低质量截取(RPq)、射频发生器(Rf)功率、离子驻留时间等条件对硒不同质量数测定的影响。结果表明:乙醇、甲烷可显著降低Ar等形成的多原子离子干扰,乙醇可明显提高硒的响应强度;在优化实验条件下,除74Se外,各离子的校准曲线线性关系良好(R ≥ 0.9996),方法检出限为0.02~0.03μg/L,低浓度和高浓度样品测试结果的RSD < 2%(n=5),平均加标回收率为95.7%。本方法样品前处理简单,使用设备单一,可满足大批量地下水中痕量硒的测定要求。

关键词: 地下水, 痕量硒, 动态反应池, 电感耦合等离子体质谱法, 乙醇, 甲烷

要点

(1) 建立了DRC-ICP-MS测定地下水中痕量硒的方法,最低检出限为0.02μg/L。

(2) 乙醇和甲烷可显著降低Ar等形成的多原子离子干扰,乙醇可明显提高硒的响应强度。

(3) 同一样品不同离子的定量结果存在显著差异,这可能与样品中硒重同位素分馏富集有关。

Determination of Trace Selenium in Groundwater by DRC-ICP-MS

ABSTRACT

BACKGROUND:

Generally, the content of Se in groundwater is lower than 1μg/L. Mass interferences caused by polyatomic species and low ionization degree can seriously affect the accuracy for determination of trace and ultratrace Se in groundwater by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Moreover, the current detection limit is higher than required for practical purposes.

OBJECTIVES:

To establish DRC-ICP-MS method for determination of trace selenium in groundwater.

METHODS:

Ethanol was used as a signal enhancer, methane was used as a reaction gas. The factors that affect different mass determination, including methane flow, ethanol content, atomizing gas flow rate, low mass interception (RPq), RF generator (Rf) power, ion residence time were discussed and optimized.

RESULTS:

Ethanol can increase response values, whereas ethanol and methane can obviously eliminate the mass spectrometry interference. Under the optimized conditions, except 74Se, calibration curves show a good relationship (R > 0.9996). The method detection limits are 0.02-0.03μg/L, the relative standard deviation (RSD, n=5) is lower than 2%, and the average spiked recovery is 95.7%.

CONCLUSIONS:

The method has simple pretreatment and single equipment, which can meet the requirements for determination of trace selenium in large quantities of groundwater.

KEY WORDS: groundwater, trace Se, dynamic reaction cell, Inductively Coupled Plasma-Mass Spectrometry, ethanol, methane

HIGHLIGHTS

(1) DRC-ICP-MS method for determination of trace selenium in groundwater is established. The minimum detection limit of this method is 0.02μg/L.

(2) Ethanol and methane can obviously eliminate the mass spectrometry interference, whereas ethanol can increase response values.

(3) There are significant differences in the quantitative results of different ions in the same sample, which may be related to the enrichment of heavy Se isotope fractionation in the sample.

本文参考文献

[1]

丁宗庆, 章平平, 曹俊, 等. 微晶二苯甲酮富集分光光度法测定水中无机硒形态和食品中总硒[J]. 分析试验室, 2017, 36(6): 709-712.

Ding Z Q, Zhang P P, Cao J, et al. A new method for the determination of inorganic selenium speciation in water and total selenium in food by enrichment with microcrystalline benzophenone[J]. Chinese Journal of Analysis Laboratory, 2017, 36(6): 709-712.

[2]

林作敏, 黄淼, 徐志强, 等. 场强放大堆积-氢化物发生-原子荧光光谱法测定水中硒[J]. 理化检验(化学分册), 2018, 54(2): 167-171.

Lin Z M, Huang M, Xu Z Q, et al. HG-AFS determination of selenium in water with field-enhanced stacking[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2018, 54(2): 167-171.

[3]

吴航, 姜效军, 吕琳琳, 等. Dowex Marathon A固相萃取-氢化物发生-原子荧光光谱法测定食品和水中硒含量[J]. 食品科学, 2017, 38(10): 204-207. doi: 10.7506/spkx1002-6630-201710034

Wu H, Jiang X J, Lü L L, et al. Determination of Se in food and water samples by solid phase extraction-hydride generation-atomic fluorescence spectroscopy[J].Food Science, 2017, 38(10): 204-207. doi: 10.7506/spkx1002-6630-201710034

[4]

胥艳, 张雪杰, 刘杰英, 等. 赶酸器浓缩-湿法消解-原子荧光光谱法检测生活饮用水中痕量硒[J]. 河南预防医学杂志, 2017, 28(11): 829-833.

Xu Y, Zhang X J, Liu J Y, et al. Determination of track selenium in drinking water by concentration-prereduction-hydride-generation atomic fluorescence spectrometry[J]. Henan Journal of Preventive Medicine, 2017, 28(11): 829-833.

[5]

Ildikó I, Péter F. Development of analytical systems for the simultaneous determination of the speciation of arsenic[As(Ⅲ), methylarsonic acid, dimethylarsinic acid, As(Ⅴ)] and selenium[Se(Ⅳ), Se(Ⅵ)][J]. Analytica Chimica Acta, 2000, 413(1): 13-23.

[6]

李晋, 王大成, 刘丹, 等. 天然水和土壤中ng/L水平亚硒酸态、硒酸态和腐植酸结合态硒的分离与测定[J]. 西华师范大学学报(自然科学版), 2014, 35(1): 36-40.

Li J, Wang D C, Liu D, et al. Determination of selenite, selenate and humic substance-bound selenium in natural waters and soil extracts at ng/L levels[J]. Journal of China West Normal University (Natural Sciences), 2014, 35(1): 36-40.

[7]

严进. 双氧水氧化1-(2-吡啶偶氮)-2-萘酚动力学光度法测定痕量硒[J]. 广州化工, 2016, 44(21): 132-134. doi: 10.3969/j.issn.1001-9677.2016.21.047

Yan J. Determination of selenium by catalytic kinetic spectrophotometry in hydrogen peroxide-PAN system[J].Guangzhou Chemical Industry, 2016, 44(21): 132-134. doi: 10.3969/j.issn.1001-9677.2016.21.047

[8]

Gürkan R, Ulusoy H, Akçay M, et al. A novel indicator system for catalytic spectrophotometric determination and speciation of inorganic selenium species (Se(Ⅳ), Se(Ⅵ)) at trace levels in natural lake and river water samples[J].Rare Metals, 2011, 30(5): 477-487. doi: 10.1007/s12598-011-0416-0

[9]

郎娜. 石墨炉原子吸收法直接测定水中硒[J]. 食品研究与开发, 2013, 34(4): 87-89. doi: 10.3969/j.issn.1005-6521.2013.04.026

Lang N. Water selenium determined by graphite furnace atomic absorption[J].Food Research and Development, 2013, 34(4): 87-89. doi: 10.3969/j.issn.1005-6521.2013.04.026

[10]

Jorge S, Pablo C, Mabel T, et al. Flow injection-hydride generation atomic absorption spectrometric determination of Se(Ⅵ) and Se(Ⅳ):Utility of a conventionally heated water bath for the on-line reduction of Se(Ⅵ)[J].Analytica Chimica Acta, 2000, 408: 191-197. doi: 10.1016/S0003-2670(99)00881-8

[11]

傅慧敏, 周益奇, 王巧环, 等. 氢化物发生-电感耦合等离子体原子发射光谱法测定环境样品中痕量硒[J]. 理化检验(化学分册), 2015, 51(2): 157-159.

Fu H M, Zhou Y Q, Wang Q H, et al. Determination of trace amount of Se in environmental samples by HG-ICP-AES[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2015, 51(2): 157-159.

[12]

梁爱惠, 李院, 黄珊珊, 等. 氢化物-KI-3-罗丹明6G体系荧光法测定痕量硒[J]. 光谱学与光谱分析, 2015, 35(5): 1306-1308. doi: 10.3964/j.issn.1000-0593(2015)05-1306-03

Liang A H, Li Y, Huang S S, et al. Fluorescence determination of trace Se with the hydride-KI-3-rhodamine 6G system[J].Spectroscopy and Spectral Analysis, 2015, 35(5): 1306-1308. doi: 10.3964/j.issn.1000-0593(2015)05-1306-03

[13]

陆晓雁, 周之荣. 硒的酶催化荧光猝灭效应研究及其在土壤分析中的应用[J]. 冶金分析, 2015, 35(12): 55-59.

Lu X Y, Zhou Z R. Study on enzymatic catalytic fluorescence quenching effect of selenium and its application to soil analysis[J]. Metallurgical Analysis, 2015, 35(12): 55-59.

[14]

辛晓东, 李伟, 胡芳, 等. 高效液相色谱-电感耦合等离子体质谱法分析水中硒的形态[J]. 化学分析计量, 2015, 24(1): 14-17. doi: 10.3969/j.issn.1008-6145.2015.01.004

Xin X D, Li W, Hu F, et al. Speciation analysis of selenium in water samples by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J].Chemical Analysis and Meterage, 2015, 24(1): 14-17. doi: 10.3969/j.issn.1008-6145.2015.01.004

[15]

季海冰, 潘荷芳. 异丙醇增感电感耦合等离子体质谱法直接测定土壤和沉积物中硒[J]. 中国环境监测, 2010, 26(6): 16-19. doi: 10.3969/j.issn.1002-6002.2010.06.006

Ji H B, Pan H F. Direct determination of Se by inductively coupled plasma mass spectrometry with isopropanol as a signal enhancer[J].Environmental Monitoring in China, 2010, 26(6): 16-19. doi: 10.3969/j.issn.1002-6002.2010.06.006

[16]

程秀花, 王海蓉, 黎卫亮, 等. 电感耦合等离子体质谱法测定硒时多元素干扰的碰撞/反应研究及其在地质样品中的应用[J]. 冶金分析, 2015, 35(12): 5-9.

Cheng X H, Wang H R, Li W L, et al. Study on collision/reaction for multielement interference in determination of selenium by inductively coupled plasma mass spectrometry and its application to geological sample[J]. Metallurgical Analysis, 2015, 35(12): 5-9.

[17]

D'Ilio S, Violante N, Majorani C, et al. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices:Still a challenge? A review[J].Analytica Chimica Acta, 2011, 698(1): 6-13.

[18]

Scott D T, Vladimir I B, Dmitry R B, et al. Reaction cells and collision cells for ICP-MS:A tutorial review[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2002, 57(9): 1361-1452. doi: 10.1016/S0584-8547(02)00069-1

[19]

Scott D T, Vladimir I B. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS).Ⅱ.Reduction of interferences produced within the cell[J].Journal of the American Society for Mass Spectrometry, 1999, 10(11): 1083-1094. doi: 10.1016/S1044-0305(99)00081-1

[20] Garbarino J R,Kanagy L K,Cree M E. Determination of Elements in Natural-Water, Biota, Sediment and Soil Samples Using Collision/Reaction Cell Inductively Coupled Plasma-Mass Spectrometry[M] . : U.S.Geological Survey, 2006
[21]

李冰, 尹明. 乙醇在电感耦合等离子体质谱中的增强效应研究[J]. 光谱学与光谱分析, 1995, 15(5): 35-40.

Li B, Yin M. Enhancement effect of ethanol in ICP-MS[J]. Spectroscopy and Spectral Analysis, 1995, 15(5): 35-40.

[22]

曹淑琴, 陈杭亭, 曾宪津, 等. 电感耦合等离子体质谱中有机试剂的基体效应研究[J]. 光谱学与光谱分析, 2000, 20(4): 498-500. doi: 10.3321/j.issn:1000-0593.2000.04.011

Cao S Q, Chen H T, Zeng X J, et al. Matrix effects in inductively coupled plasma mass spectrometry by use of organic solvents[J].Spectroscopy and Spectral Analysis, 2000, 20(4): 498-500. doi: 10.3321/j.issn:1000-0593.2000.04.011

[23]

王征, 赵学玒, 孙传强, 等. 电感耦合等离子体质谱法测定痕量铁元素时碰撞反应池条件的探讨[J]. 冶金分析, 2015, 35(6): 1-7.

Wang Z, Zhao X H, Sun C Q, et al. Discussion on collision/reaction cell conditions for determination of trace iron by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2015, 35(6): 1-7.

[24]

朱建明, 谭德灿, 王静, 等. 硒同位素地球化学研究进展与应用[J]. 地学前缘, 2015, 22(5): 102-114.

Zhu J M, Tan D C, Wang J, et al. Application and progress in selenium stable isotope geochemistry[J]. Eatth Science Frontiers, 2015, 22(5): 102-114.

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[3]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[4]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[5]

姚玉玲, 吴丽琨, 刘卫, 李刚. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽. 岩矿测试, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012

[6]

代阿芳, 鲁立强, 潘河, 王苏明, 王亚平, 许春雪, 袁建. 电感耦合等离子体质谱法测定地下水中锑的不确定度评定. 岩矿测试, 2010, 29(4): 431-437.

[7]

许春雪, 王亚平, 王苏明, 安子怡, 代阿芳, 袁建, 朱家平. 电感耦合等离子体质谱法测定地下水中镉的不确定度评定. 岩矿测试, 2010, 29(5): 607-612.

[8]

马生凤, 温宏利, 许俊玉, 屈文俊, 曹亚萍. 电感耦合等离子体质谱法测定地下水中44个元素. 岩矿测试, 2010, 29(5): 552-556.

[9]

贺攀红, 杨珍, 荣耀, 龚书浩, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法测定铀矿地质样品中痕量硒. 岩矿测试, 2016, 35(2): 139-144. doi: 10.15898/j.cnki.11-2131/td.2016.02.005

[10]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[11]

, 宋旭文, 辛仁轩. 等离子体光谱进样系统乙醇溶液的雾化特性. 岩矿测试, 2002, (4): 284-290.

[12]

陈波, 刘洪青, 邢应香. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲. 岩矿测试, 2014, 33(2): 192-196.

[13]

崔德松. 铜-铜试剂分离富集-电感耦合等离子体发射光谱法测定地下水中痕量汞. 岩矿测试, 2011, 30(3): 321-324.

[14]

张海政, 伊丽莹. 钍—偶氮胂Ⅲ—乙醇体系显色反应的研究及应用. 岩矿测试, 1991, (3): 182-184.

[15]

王未肖, 李迎霞, 哈婧. 巯基棉分离富集-荧光分光光度法测定地下水中的痕量硒. 岩矿测试, 2005, (4): 311-313.

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

张琢, 邵超英, 温晓华, 何中发. 地下水中钙和镁的离子色谱法同时测定. 岩矿测试, 2010, 29(5): 621-624.

[18]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[19]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[20]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

计量
  • PDF下载量(25)
  • 文章访问量(68)
  • HTML全文浏览量(23)
  • 被引次数(0)
目录

Figures And Tables

甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒

刘金巍, 刘雪松, 边超, 张涛, 张智印, 魏建朋