【引用本文】 陈伟锐, . 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128. doi: 10.15898/j.cnki.11-2131/td.201804160045
CHEN Wei-rui. Improvement of Experimental Conditions for the Determination of Sulfur in Soil and Stream Sediments by High-frequency Infrared Carbon and Sulfur Analyzer[J]. Rock and Mineral Analysis, 2019, 38(1): 123-128. doi: 10.15898/j.cnki.11-2131/td.201804160045

高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进

广东省地质实验测试中心, 广东 广州 510080

收稿日期: 2018-04-16  修回日期: 2018-08-02  接受日期: 2018-08-10

作者简介: 陈伟锐, 工程师, 主要从事土壤和水系沉积物的无机元素分析。E-mail:cwr925@qq.com

Improvement of Experimental Conditions for the Determination of Sulfur in Soil and Stream Sediments by High-frequency Infrared Carbon and Sulfur Analyzer

Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China

Received Date: 2018-04-16
Revised Date: 2018-08-02
Accepted Date: 2018-08-10

摘要:硫是多目标区域地球化学调查项目中的必测元素。应用高频红外碳硫仪测定样品过程中,由于坩埚空白、管路中水蒸汽、样品称样量、样品和助熔剂叠放顺序、助熔剂添加量等因素影响,导致硫测试值的重复性和准确度差,甚至为负数。本文研究了以上因素对硫测试值重复性和准确度的具体影响以及解决措施,着重对样品称样量、样品和助熔剂叠放顺序、助熔剂添加量进行对比实验,优化出适合分析土壤和水系沉积物中硫含量的最佳条件。结果表明:在降低坩埚空白,严格控制仪器气管中湿度的情况下,采用0.08g样品、0.5g铁和1.0g钨三者混合燃烧的方式分析样品后,其校准曲线线性良好(r ≥ 0.9990)。对不同分析结果采用分段做校准曲线校准,结果对数差△lg为-0.036~0.062,RSD为7.13%~9.93%,两者均符合《多目标区域地球化学调查规范(1:2500000)》(DZ/T 0258-2014)中要求,说明本方法分析结果准确度高、重复性良好。

关键词: 土壤, 水系沉积物, 硫重复性, 铁钨助熔剂, 最佳条件

要点

(1) 分析了影响高频红外碳硫仪测定硫准确度的各个因素。

(2) 对比称样量、样品与助熔剂叠放顺序、助熔剂添加量三者不同条件下硫的测定结果。

(3) 优化出测定土壤和水系沉积物中硫的最佳分析条件。

Improvement of Experimental Conditions for the Determination of Sulfur in Soil and Stream Sediments by High-frequency Infrared Carbon and Sulfur Analyzer

ABSTRACT

BACKGROUND:

In the multi-target regional geochemi-cal survey project, sulfur is one of the analyzed elements. During measurement of samples with a high-frequency infrared carbon-sulfur analyzer, different factors include the blank of the crucible, water vapor in the pipeline, different sample weights, sample and flux stacking order, and different flux additions, which would result in poor reproducibility of sulfur and even a negative value.

OBJECTIVES:

To eliminate factors that affect the repeatability of sulfur analysis and improve the accuracy of sulfur analysis.

METHODS:

The conditions for determination of sulfur in soil-stream sediments were optimized by comparing the sample weight, sample and flux stacking order, and flux amount.

RESULTS:

In the case of reducing the blank value of the crucible and strictly controlling the humidity in the trachea of the instrument, the calibration curve shows a good relationship (r ≥ 0.9990) after the sample was analyzed by mixing 0.08g sample, 0.5g iron and 1.0g tungsten. After analyzing the different results using a calibration curve of the appropriate concentration, the logarithmic differences of the sulfur analysis results are -0.036-0.062 and the relative standard deviations (RSDs) are 7.13%-9.93%.

CONCLUSIONS:

Both the logarithmic difference and the standard deviation meet the requirement of multi-target regional geochemical survey (1:2500000), indicating that the analytical results of this method are accurate and reproducible.

KEY WORDS: soil, stream sediment, sulfur reproducibility, iron and tungsten flux, optimal conditions

HIGHLIGHTS

(1) The various factors affecting the accuracy of sulfur determination by High-frequency Infrared Carbon-Sulfur Analyzer are investigated.

(2) The sulfur contents based on different sample weights, different stacking schedules of samples and fluxes, and different addition levels of flux are compared.

(3) The conditions for analyzing sulfur in soil and water sediments are optimized.

本文参考文献

[1]

张长均, 王蓬, 张之果, 等. 影响高频红外碳硫仪分析结果稳定性因素的探讨[J]. 冶金分析, 2006, 26(6): 90-91. doi: 10.3969/j.issn.1000-7571.2006.06.029

Zhang C J, Wang P, Zhang Z G, et al. Discussion on the factors affecting the stability of high frequency infrared carbon and sulfur analyzer[J].Metallurgical Analysis, 2006, 26(6): 90-91. doi: 10.3969/j.issn.1000-7571.2006.06.029

[2]

黄启华, 徐志强, 杨玮玮, 等. 高频红外碳硫仪测定重晶石和黄铁矿中的硫[J]. 岩矿测试, 2017, 36(2): 130-135.

Huang Q H, Xu Z Q, Yang W W, et al. Determination of sulfur in barite and pyrite by high infrared carbon-sulfur spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135.

[3]

施善林, 李东麟, 李晓晗, 等. 高频燃烧红外吸收法测定镍铁合金中硫含量[J]. 有色矿冶, 2015, 31(3): 52-54. doi: 10.3969/j.issn.1007-967X.2015.03.016

Shi S L, Li D L, Li X H, et al. Determination of sulfur in ferro-nickel alloy by high frequency-absorption method[J].Non-ferrous Mining and Metallurgy, 2015, 31(3): 52-54. doi: 10.3969/j.issn.1007-967X.2015.03.016

[4]

刘志, 段英楠. 红外碳硫分析仪测定土壤样品中的碳和硫[J]. 吉林地质, 2009, 28(3): 103-105. doi: 10.3969/j.issn.1001-2427.2009.03.028

Liu Z, Duan Y N. Detrmination of carbon and sulfur in soil samples by high frequency IR absorption spectrometric method[J].Jilin Geology, 2009, 28(3): 103-105. doi: 10.3969/j.issn.1001-2427.2009.03.028

[5]

史世云, 温宏利, 李冰, 等. 高频燃烧-红外碳硫仪测定地质样品中的碳和硫[J]. 岩矿测试, 2001, 20(4): 267-271. doi: 10.3969/j.issn.0254-5357.2001.04.006

Shi S Y, Wen H L, Li B, et al. Determination of carbon and sulfur in geological samples by high frequency IR-absorption method[J]. Rock and Mineral Analysis, 2001, 20(4): 267-271. doi: 10.3969/j.issn.0254-5357.2001.04.006

[6]

刘行周, 李永强, 霍立伟, 等. 高频红外碳硫分析仪CS-8800检测铸铁中碳硫元素含量的方法研究[J]. 山东化工, 2014, 43(8): 66-67. doi: 10.3969/j.issn.1008-021X.2014.08.022

Liu X Z, Li Y Q, Huo L W, et al. Study on the method of carbon sulfur content by high frequency infrared carbon sulfur analyzer CS-8800 detection in cast iron[J].Shandong Chemical Industry, 2014, 43(8): 66-67. doi: 10.3969/j.issn.1008-021X.2014.08.022

[7]

龚仓, 付桂花, 黄艳波, 等. 高频燃烧-红外碳硫仪测定岩心钻探样品中碳硫[J]. 黄金, 2016, 37(12): 77-80. doi: 10.11792/hj20161219

Gong C, Fu G H, Huang Y B, et al. Determination of carbon and sulfur in drilling core samples by high frequency combustion-infrared carbon and sulfur analyzer[J].Gold, 2016, 37(12): 77-80. doi: 10.11792/hj20161219

[8]

徐霞. 高频红外碳硫分析仪测定铬铁矿中硫含量[J]. 化工时刊, 2016, 30(8): 23-26.

Xu X. High frequency infrared carbon sulfur analyzer determination of sulfur content inchromite[J]. Chemical Industry Times, 2016, 30(8): 23-26.

[9]

王娜. 高频红外碳硫分析仪测定石膏矿中的三氧化硫[J]. 分析测试技术与仪器, 2017, 23(2): 120-123.

Wang N. High frequency infrared carbon sulfur analyzer determinate sulfur trioxide in gypsummines[J]. Analysis and Testing Technology and Instruments, 2017, 23(2): 120-123.

[10]

况芳城. 高频红外碳硫分析仪测定地质样品中不同含量的硫[J]. 福建地质, 2013, 32(3): 249-252. doi: 10.3969/j.issn.1001-3970.2013.03.011

Kuang F C. Determination of the different content of sulfur in geological samples by high frequency IR Carbon-sulfur analyzer[J].Geology of Fujian, 2013, 32(3): 249-252. doi: 10.3969/j.issn.1001-3970.2013.03.011

[11]

张明杰, 戴雪峰, 陆丁荣, 等. 高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定[J]. 岩矿测试, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011

Zhang M J, Dai X F, Lu D R, et al. Rapid determination of carbon and sulfur in farmland soil samples by high frequency-infrared carbon sulfur analyzer[J]. Rock and Mineral Analysis, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[4]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[7]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[8]

李国会. X射线荧光光谱法测定土壤和水系沉积物中的痕量铪和锆. 岩矿测试, 2001, (3): 217-219.

[9]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[10]

张勤, 詹秀春, . 地质样品痕量氯溴和硫的X射线荧光光谱法测定. 岩矿测试, 2002, (1): 12-18.

[11]

沙艳梅, 赵学沛, 张歌, 焦万里, 张丹阳. 多向观测电感耦合等离子体发射光谱法同时测定土壤和水系沉积物中常量和微量元素. 岩矿测试, 2008, 27(4): 291-294.

[12]

张莉娟, 刘义博, 李小莉, 徐铁民. 超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素. 岩矿测试, 2014, 33(4): 517-522.

[13]

谢忠, 边维勇, 佟成冶, 马力, 杨晓波. 矿山开采对辽宁柴河流域生态环境的影响. 岩矿测试, 2007, 26(4): 293-297.

[14]

郭敬华, 马辉, 王水锋. 原子荧光光谱法测定土壤和水系沉积物国家标准物质中砷. 岩矿测试, 2009, 28(2): 182-184.

[15]

王娜, 滕新华, 吴彦涛, 曾江萍, 吴良英, 陈枫. 三氯化铝浸取-火焰原子吸收光谱法测定水系沉积物中低含量的碳酸铁. 岩矿测试, 2015, 34(2): 229-233. doi: 10.15898/j.cnki.11-2131/td.2015.02.013

[16]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[17]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[18]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[19]

魏峰, 沈小明, 陈海英, 沈加林. 土壤和沉积物中22种有机氯农药和8种多氯联苯的气相色谱分析. 岩矿测试, 2013, 32(6): 952-958.

[20]

肖芳, 汤志勇, 郝志红, 帅琴, 郑洪涛, 邱海鸥. 超声提取-氢化物发生-原子荧光光谱法测定水系沉积物中As(Ⅲ)和As(Ⅴ). 岩矿测试, 2011, 30(5): 545-549.

计量
  • PDF下载量(21)
  • 文章访问量(94)
  • HTML全文浏览量(13)
  • 被引次数(0)
目录

Figures And Tables

高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进

陈伟锐