【引用本文】 张东, 李玉红, 张鸿禹, 等. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价[J]. 岩矿测试, 2019, 38(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201804100040
ZHANG Dong, LI Yu-hong, ZHANG Hong-yu, et al. Application of Modified DDARP Method for Purification of Barite in Natural Water Samples[J]. Rock and Mineral Analysis, 2019, 38(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201804100040

应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价

河南理工大学资源环境学院, 河南 焦作 454000

收稿日期: 2018-04-10  修回日期: 2018-08-01  接受日期: 2018-08-10

基金项目: 国家自然科学基金项目(41573095;41661144042)

作者简介: 张东, 博士, 副教授, 主要从事环境地球化学方面的教学和研究工作。E-mail:zhangdong@hpu.edu.cn

Application of Modified DDARP Method for Purification of Barite in Natural Water Samples

School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China

Received Date: 2018-04-10
Revised Date: 2018-08-01
Accepted Date: 2018-08-10

摘要:二乙酸三胺五乙酸(DTPA)溶解再沉淀方法(DDARP)可去除硫酸钡沉淀过程中引入的硝酸盐杂质,但该方法对不同类型水体样品硫酸钡沉淀处理效果报道不多,特别是对有机质含量高的水体样品沉淀的硫酸钡固体是否有纯化作用尚未明确。本文选择硫酸钡高纯试剂以及水体样品沉淀的硫酸钡固体作为研究对象,采用改进DDARP方法纯化后,借助元素分析仪和稳定同位素质谱仪测定纯化前后硫酸钡固体的氧同位素值,对比分析该方法的纯化效果。结果表明:①改进DDARP方法主要内容为20mg硫酸钡沉淀溶于30mL DTPA-氢氧化钠混合溶液,再沉淀后超纯水洗涤2次,硫酸钡高纯试剂纯化前后氧同位素值没有明显变化,说明其杂质少,可直接作为实验室标准使用,而黄河水硫酸钡沉淀纯化前后氧同位素差异均值为0.8‰,说明其杂质较多,需要纯化。②六种不同类型水体硫酸钡沉淀纯化前后氧同位素差异值范围为-0.4‰~+1.9‰,其中溶解性洗衣粉、地下水、河水、生活污水、溶解性化学肥料以及雨水的差异均值分别为0.7‰、0.2‰、0.3‰、-0.3‰、0.1‰和1.4‰。③雨水硫酸钡沉淀纯化前后氧同位素差异值较大(+0.5‰~+1.9‰),与雨水中较高NO3/SO4摩尔比值(0.2~1.9,均值0.7)有关。污水纯化前后氧同位素差异值为负值(-0.2‰~0.4‰),说明纯化方法可以去除有机物干扰。研究认为:改进DDARP方法有效降低了硝酸盐和有机质干扰,有利于获得更准确的硫酸盐样品氧同位素组成,可以作为水体硫酸盐氧同位素标准纯化方法。

关键词: 水体硫酸盐, 氧同位素, 改进DDARP方法, 硝酸盐, 有机物

要点

(1) 改进DDARP方法主要内容为20mg硫酸钡沉淀溶于30mL DTPA-氢氧化钠混合溶液,再沉淀后超纯水洗涤2次。

(2) 硫酸钡高纯试剂不需要纯化,可直接作为硫酸盐氧同位素测试实验室标准。

(3) 改进DDARP方法对天然水体样品硫酸钡沉淀中硝酸盐杂质有去除作用,对有机物杂质也有去除效果。

Application of Modified DDARP Method for Purification of Barite in Natural Water Samples

ABSTRACT

BACKGROUND:

Diethylenetriaminepentaacetic acid (DTPA) dissolution and reprecipitation (DDARP) method is used frequently to eliminate encapsulated nitrate during barite precipitation. However, the effect of DDARP on barite precipitated from different kinds of natural water is rarely reported, particularly it is not clear whether the DDARP method plays a role in eliminating the effect of organic matter on barite from organic-rich water samples.

OBJECTIVES:

To obtain more accurate sulfate oxygen isotope values, using the modified DDARP method and identify the factors affecting the oxygen isotope values of barite from natural water samples.

METHODS:

Element Analyzer (EA) coupled with Isotope Ratio Mass Spectrometry (IRMS) was used to determine the oxygen isotope values of original and purified barite.

RESULTS:

After purification, oxygen isotope values of high grade barite reagent show little variations, indicating that purification of high grade barite reagent is not needed and it can be directly used as the laboratory standard. However, oxygen isotope values of barite from Yellow River water have large variations from 0.6 to 1.0 with an average of 0.8‰, indicating that it is necessary to purify natural water barite. The differences in oxygen isotope values between original and purified barite from natural water samples vary from -0.4‰ to +1.9‰, and the average differences of oxygen isotope values are 0.7‰, 0.2‰, 0.3‰, -0.3‰, 0.1‰ and 1.4‰ for dissolved detergent, groundwater, river water, sewage, dissolved fertilizer, and rainwater, respectively. The large positive differences of oxygen isotope values (from +0.5‰ to +1.9‰) between original and purified barite is found in rainwater samples due to nitrate encapsulated in barite, which is related to the high molar ratio of nitrate to sulfate in rainwater (from 0.2 to 1.9 with an average of 0.7). The negative differences of oxygen isotope values (from -0.2‰ to 0.4‰) are observed in sewage with respect to the organic matter encapsulated in barite from organic-rich sewage, suggesting that the purification method can remove organic interference.

CONCLUSIONS:

The modified DDARP method works well in eliminating nitrate and organic matter encapsulated in barite. It can be used to purify barite to obtain more accurate oxygen isotope values of sulfate in natural water samples. The proposed method can be used as a standard purification method for water body sulfate oxygen isotope determination.

KEY WORDS: dissolved sulfate, oxygen isotope, modified DDARP method, nitrate, organic matter

HIGHLIGHTS

(1) The procedure of modified DDARP method was that 20mg barite was dissolved in 30mL DTPA-NaOH solution, and washed 2 times with ultrapure water after reprecipitation.

(2) High grade barite reagent was not necessary to be purified and could be directly used as laboratory standard material for determination of sulfate oxygen isotope values.

(3) The modified DDARP method was useful for eliminating nitrate and organic matter encapsulated in barite precipitated from natural water samples.

本文参考文献

[1]

Le Gendre E, Martin E, Villemant B, et al. A simple and reliable anion-exchange resin method for sulfate extraction and purification suitable for multiple O-and S-isotope measurements[J].Rapid Communications in Mass Spectrometry, 2017, 31(1): 137-144. doi: 10.1002/rcm.v31.1

[2]

Hannon J E, Boehlke J K, Mroczkowski S J, et al. Effects of nitrate and water on the oxygen isotopic analysis of barium sulfate precipitated from water samples[J].Rapid Communications in Mass Spectrometry, 2008, 22(24): 4109-4120. doi: 10.1002/rcm.v22:24

[3]

Kang P G, Mayer B, Mitchell M J, et al. Comparison of sample preparation methods for stable isotope analysis of dissolved sulphate in forested watersheds[J].Isotopes in Environmental and Health Studies, 2012, 48(3): 410-420. doi: 10.1080/10256016.2012.667810

[4]

Li X, Gan Y, Zhou A, et al. Hydrological controls on the sources of dissolved sulfate in the Heihe River, a large inland river in the arid northwestern China, inferred from S and O isotopes[J].Applied Geochemistry, 2013, 35: 99-109. doi: 10.1016/j.apgeochem.2013.04.001

[5]

Li X, Gan Y, Zhou A, et al. Relationship between water discharge and sulfate sources of the Yangtze River inferred from seasonal variations of sulfur and oxygen isotopic compositions[J].Journal of Geochemical Exploration, 2015, 153: 30-39. doi: 10.1016/j.gexplo.2015.02.009

[6]

Li X, Zhou A, Gan Y, et al. Controls on the δ34S and δ18O of dissolved sulfate in the Quaternary aquifers of the North China Plain[J].Journal of Hydrology, 2011, 400(3-4): 312-322. doi: 10.1016/j.jhydrol.2011.01.034

[7]

李小倩, 刘运德, 周爱国, 等. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析[J]. 地球科学——中国地质大学学报, 2014, 39(11): 1647-1654.

Li X Q, Liu Y D, Zhou A G, et al. Sulfur and oxygen isotope compositions of dissolved sulfate in the Yangtze River during high water period and its sulfate source tracing[J]. Earth Science-Journal of China University of Geoscience, 2014, 39(11): 1647-1654.

[8]

张东, 黄兴宇, 李成杰, 等. 硫和氧同位素示踪黄河及支流河水硫酸盐来源[J]. 水科学进展, 2013, 24(3): 418-426.

Zhang D, Huang X Y, Li C J, et al. Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes[J]. Advance in Water Science, 2013, 24(3): 418-426.

[9]

魏英, 郭照冰, 葛鑫, 等. 硫氧同位素示踪南京北郊大气PM2.5中硫酸盐来源[J]. 环境科学, 2015, 36(4): 1182-1186.

Wei Y, Guo Z B, Ge X, et al. Tracing sources of sulfate aerosol in Nanjing northern suburb using sulfur and oxygen isotopes[J]. Environmental Science, 2015, 36(4): 1182-1186.

[10]

郭照冰, 吴梦龙, 刘凤玲, 等. 北京大气气溶胶中硫氧稳定同位素组成研究[J]. 中国科学(地球科学), 2014, 44(7): 1556-1560.

Guo Z B, Wu M L, Liu F L, et al. Multiple sulfur and oxygen isotopes in Beijing aerosol[J]. Science China (Earth Sciences), 2014, 44(7): 1556-1560.

[11]

Bao H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution[J]. Analytical Chemistry, 2006, 78(1): 304-309.

[12]

Michalski G, Kasem M, Rech J A, et al. Uncertainties in the oxygen isotopic composition of barium sulfate induced by coprecipitation of nitrate[J].Rapid Communications in Mass Spectrometry, 2008, 22(19): 2971-2976. doi: 10.1002/rcm.v22:19

[13]

Xie L, Spiro B, Wei G, et al. Purification of BaSO4 precipitate contaminated with organic matter for oxygen isotope measurements (δ18O and △17O)[J].Rapid Communications in Mass Spectrometry, 2016, 30(14): 1727-1733. doi: 10.1002/rcm.v30.14

[14]

李干蓉, 刘丛强, 陈椽, 等. 丰水期乌江上游干流水库-河流体系硫同位素组成[J]. 长江流域资源与环境, 2009, 18(4): 350-355. doi: 10.3969/j.issn.1004-8227.2009.04.009

Li G R, Liu C Q, Chen C, et al. Sulfur isotope composition of river channel and reservoir water in upper reaches of Wujiang River in high flow season[J].Resources and Environment in the Yangtze Basin, 2009, 18(4): 350-355. doi: 10.3969/j.issn.1004-8227.2009.04.009

[15]

张东, 刘松韬, 张永领, 等. 黄河水沙调控过程中河水溶解性硫酸盐硫和氧同位素组成特征[J]. 生态学杂志, 2018, 37(3): 723-733.

Zhang D, Liu S T, Zhang Y L, et al. Characteristics of sulfur and oxygen isotopes of dissolved sulfate in repsonse to water-sediment controlling in the Yellow River[J]. Chinese Journal of Ecology, 2018, 37(3): 723-733.

[16]

Zhang D, Li X D, Zhao Z Q, et al. Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the Western North China Plain[J].Applied Geochemistry, 2015, 52: 43-56. doi: 10.1016/j.apgeochem.2014.11.011

[17]

Hosono T, Wang C H, Umezawa Y, et al. Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area[J].Journal of Hydrology, 2011, 397(1-2): 23-36. doi: 10.1016/j.jhydrol.2010.11.025

[18]

Torres M A, West A J, Li G, et al. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales[J].Nature, 2014, 507: 346-349. doi: 10.1038/nature13030

[19]

Kaown D, Koh D C, Mayer B, et al. Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, Mid-Eastern Korea)[J]. Agriculture Ecosystems & Environment, 2009, 132(3-4): 223-231.

[20]

Bardhan P, Naqvi S W A, Karapurkar S G, et al. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of Western India:Implications for biogeochemical processes[J].Biogeosciences, 2017, 14(4): 767-779. doi: 10.5194/bg-14-767-2017

相似文献(共20条)

[1]

刘丛强, 肖化云. 水样硝酸盐氮同位素分析预处理方法探讨. 岩矿测试, 2002, (2): 105-108.

[2]

杜广鹏, 王旭, 张福松. GasBench Ⅱ顶空瓶内空气背景对<100 μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探. 岩矿测试, 2010, 29(6): 631-638.

[3]

张建锋, 刘汉彬, 石晓, 金贵善, 李军杰, 张佳, 韩娟, 郭东侨, 钟芳文. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究. 岩矿测试, 2019, 38(1): 45-54. doi: 10.15898/j.cnki.11-2131/td.201805170062

[4]

徐文, 周建伟, 刘存富, 甘义群, 刘运德, 张彦鹏. 地下水硝酸盐15N和18O同位素在线测试技术研究. 岩矿测试, 2013, 32(2): 305-312.

[5]

杨会, 唐伟, 吴夏, 王华, 应启和, 涂林玲. Kiel Ⅳ-IRMS双路在线分析微量碳酸盐的碳氧同位素. 岩矿测试, 2014, 33(4): 480-485.

[6]

朱园园, 邱海鸥, 杜永, 汤志勇, 帅琴, 宋虎跃. 应用GasBench Ⅱ-IRMS优化碳氧同位素分析方法. 岩矿测试, 2014, 33(6): 789-794.

[7]

叶晓勤, 孙伟, 王茜, 佘小林, 陶文新. 离子色谱法测定水果和蔬菜中硝酸盐. 岩矿测试, 2007, 26(3): 233-234237.

[8]

胡平, 王淑惠, 刘印平, 杨立新. 液态乳及乳粉中硝酸盐的污染分析. 岩矿测试, 2013, 32(2): 330-333.

[9]

金贵善, 刘汉彬, 韩娟, 李军杰, 张建锋, 张佳, 石晓. 镀镍碳为还原剂在线高温裂解法测定硫酸钡中氧同位素组成. 岩矿测试, 2019, 38(4): 365-372. doi: 10.15898/j.cnki.11-2131/td.201809090103

[10]

张琳, 陈宗宇, 刘福亮, 贾艳琨, 张向阳, 陈立. 水中氢氧同位素不同分析方法的对比. 岩矿测试, 2011, 30(2): 160-163.

[11]

张千杰. 天然水中有机污染物的富集与测定. 岩矿测试, 1989, (2): 122-126.

[12]

李铁军. 氧同位素在岩石成因研究的新进展. 岩矿测试, 2013, 32(6): 841-849.

[13]

蓝高勇, 吴夏, 杨会, 唐伟, 应启和, 王华. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究. 岩矿测试, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049

[14]

裴世桥, 龙梅. 超临界流体萃取技术在地质样品分析中的应用. 岩矿测试, 2000, (4): 286-291.

[15]

张千杰. 酚二磺酸测定硝酸盐的改进. 岩矿测试, 1984, (3): 278-279.

[16]

黄园英, 秦臻, 刘丹丹, 王晓春. 纳米铁还原脱氮动力学及其影响因素. 岩矿测试, 2011, 30(1): 53-58.

[17]

刘敬秀. 硅酸盐氧同位素标样研制. 岩矿测试, 1990, (4): 276-282.

[18]

陈成业, 刘本立. 大红山古火山口的碳酸盐围岩的氧和碳同位素研究. 岩矿测试, 1982, (4): 1-5.

[19]

张媛媛, 贺行良, 孙书文, 朱志刚. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探. 岩矿测试, 2012, 31(4): 627-631.

[20]

郝新丽, 韩思航, 杨磊, 戴忆竹, 黄璐瑶, 王竞铮. 基于高温燃烧裂解-气体同位素质谱法研究水样中有机物对氢同位素比值的影响. 岩矿测试, 2019, 38(4): 418-424. doi: 10.15898/j.cnki.11-2131/td.201811150121

计量
  • PDF下载量(10)
  • 文章访问量(91)
  • HTML全文浏览量(28)
  • 被引次数(0)
目录

Figures And Tables

应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价

张东, 李玉红, 张鸿禹, 郝伟博, 晏文荣, 杨伟, 贾保军