【引用本文】 曾江萍, 李小莉, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J]. 岩矿测试, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038
ZENG Jiang-ping, LI Xiao-li, ZHANG Nan, et al. Determination of High Concentration of Fluorine in Lithium Mica by X-ray Fluorescence Spectrometry with Pressed-Powder Pellets[J]. Rock and Mineral Analysis, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟

1. 

中国地质调查局天津地质调查中心, 天津 300170

2. 

中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

收稿日期: 2018-04-06  修回日期: 2018-07-30  接受日期: 2018-08-10

基金项目: 中国地质调查局地质调查项目(DD20160094)

作者简介: 曾江萍, 硕士, 高级工程师, 主要从事光谱分析研究。E-mail:zengjiangping@163.com

通信作者: 张楠, 硕士, 高级工程师, 主要从事岩石矿物分析研究。E-mail:nan5460@126.com

Determination of High Concentration of Fluorine in Lithium Mica by X-ray Fluorescence Spectrometry with Pressed-Powder Pellets

1. 

Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China

2. 

Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

Corresponding author: ZHANG Nan, nan5460@126.com

Received Date: 2018-04-06
Revised Date: 2018-07-30
Accepted Date: 2018-08-10

摘要:锂云母中的氟含量很高(1.36%~8.71%),在焙烧锂云母矿物时锂的浸出率随着含氟量的增加而逐步下降,随着锂云母脱氟率的提高,锂的浸出率也相应提高,准确测定锂云母中的氟、控制氟含量可为确定焙烧过程的工艺条件、设备参数及成本提供依据。目前氟的测定主要采用离子选择电极法,但过程复杂、分析时间长且空白值高。本文采用粉末直接压片制样X射线荧光光谱法测定锂云母中的氟,氟的检出限为46±4μg/g。将锂矿石标准物质和人工配制校准物质制成工作曲线,经验系数校正基体效应和谱线干扰,方法精密度(RSD,n=10)为1.03%。采用本法分析由标准样品合成的样品,测定值与理论值吻合良好;用实际样品验证,测定结果与离子选择电极法的测定值相符。本法适用于分析锂云母中0.68%~9.14%的氟。

关键词: 锂云母, , 经验系数校正, 粉末压片, X射线荧光光谱法

要点

(1) 建立了粉末直接压片制样-X射线荧光光谱法测定锂云母中高含量氟的方法,本法简便、快速、准确。

(2) 对比了本法和离子选择性电极法的测定结果,两种方法结果相符。

(3) 添加人工配制校准物质制成工作曲线,采用经验系数校正基体效应和谱线干扰。

Determination of High Concentration of Fluorine in Lithium Mica by X-ray Fluorescence Spectrometry with Pressed-Powder Pellets

ABSTRACT

BACKGROUND:

The fluorine content in lithium mica is very high (1.36% to 8.71%), and the leaching rate of lithium during roasting lithium mica minerals decreases gradually with the increase of fluorine content. With increased defluorination of lithium mica, the leaching rate of lithium is also increased accordingly. Therefore, accurate determination of fluorine in lithium mica and control of fluorine content can provide a basis for determining the process conditions, equipment parameters and cost of roasting process. At present, the most common used method for determination of fluorine is the ion selective electrode method. However, the process is complex, the analysis time is long and the blank value is high. X-ray Fluorescence Spectrometry (XRF) is a green and pollution-free method, which is simple, fast and accurate.

OBJECTIVES:

To determine the fluorine content in lithium mica.

METHODS:

The fluorine content in lithium mica was determined by XRF with pressed-powder pellets. The working curve was made from standard material lithium ore and manually prepared calibration material, and the experience coefficient was used to correct the matrix effect and spectral interference.

RESULTS:

The method precision(RSD, n=10) is 1.03% and the detection limit of fluorine is 46±4μg/g. Analytical results of samples synthesized from standard samples acquired by this method are in good agreement with theoretical values. It is demonstrated by actual samples that the determination results are consistent with those of the ion selective electrode method.

CONCLUSIONS:

This method is suitable for determining fluorine in lithium mica with contents ranging from 0.68% to 9.14%.

KEY WORDS: lithium mica, fluorine, experience coefficient correction, pressed-powder pellets, X-ray Fluorescence Spectrometry

HIGHLIGHTS

(1) A simple, fast, and accurate method for the determination of high concentrations of fluorine in lithium mica by X-ray Fluorescence Spectrometry with pressed-powder pellets was established.

(2) Determination consistency with the ion selective electrode method was proved.

(3) The working curve was made by adding artificial formulation calibration materials, and the matrix effect and spectral interference were corrected by experience coefficient.

本文参考文献

[1]

林高逵. 焙烧锂云母含氟量对锂溶出率的影响研究[J]. 稀有金属与硬质合金, 2006, 34(3): 63-64. doi: 10.3969/j.issn.1004-0536.2006.03.015

Lin G K. Study of impact of F content in calcined Li mica on Li digestion rate[J].Rare Metals and Cemented Carbides, 2006, 34(3): 63-64. doi: 10.3969/j.issn.1004-0536.2006.03.015

[2]

徐盛明, 汪锡孝, 张传福, 等. 宜春锂云母焙烧过程的研究[J]. 冶矿工程, 1994, 14(1): 56-58.

Xu S M, Wang X X, Zhang C F, et al. A study on the roasting process of Yichun lepidolite[J]. Mining and Metallurgical Engineering, 1994, 14(1): 56-58.

[3]

戴凤英, 许蓓芬. 锂云母中氟测定方法的研究[J]. 广东有色金属学报, 1997, 7(1): 56-60.

Dai F Y, Xu B F. Determination of fluoride in lepidolite[J]. Journal of Guangdong Non-Ferrous Metals, 1997, 7(1): 56-60.

[4]

肖芳, 倪文山, 毛香菊, 等. 混合碱熔融-离子选择性电极法测定矿石中氟[J]. 冶金分析, 2015, 35(9): 77-82.

Xiao F, Ni W S, Mao X J, et al. Determination of fluorine in ore by mixed alkali fusion-ion selective electrode method[J]. Metallurgical Analysis, 2015, 35(9): 77-82.

[5]

余建平, 甘金朝, 林燕, 等. 氟离子选择电极法测定稀土-镁中间合金中的氟[J]. 稀土, 2012, 33(3): 82-85. doi: 10.3969/j.issn.1004-0277.2012.03.018

Yu J P, Gan J Z, Lin Y, et al. Determination of fluorine in rare earth magnesium master alloy by fluorine ion-selective electrode analysis[J].Chinese Rare Earths, 2012, 33(3): 82-85. doi: 10.3969/j.issn.1004-0277.2012.03.018

[6]

李清彩, 赵庆令, 张洪民, 等. 离子选择性电极电位法测定钼矿石和钨矿石中氟[J]. 理化检验(化学分册), 2011, 47(8): 932-934.

Li Q C, Zhao Q L, Zhang H M, et al. Potentiometric determination of fluoride in ores of molybdenum and tungsten with fluoride ion selective electrode[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2011, 47(8): 932-934.

[7]

沙鸥, 马卫兴, 卢敏, 等. 分光光度法测定牙膏中游离氟的含量[J]. 日用化学工业, 2011, 41(1): 76-78.

Sha O, Ma W X, Lu M, et al. Spectrophotometric determination of fluoride ion in toothpaste[J]. China Surfactant Detergent & Cosmetics, 2011, 41(1): 76-78.

[8]

刘春, 王丹, 常诚, 等. 碱熔融-分光光度法测定富铌渣中氟的探讨[J]. 冶金分析, 2014, 34(4): 47-50.

Liu C, Wang D, Chang C, et al. Discussion on alkali fusion-spectrophotometric determination of fluorine in niobium-enriched slag[J]. Metallurgical Analysis, 2014, 34(4): 47-50.

[9]

刘春, 郝茜, 崔爱端, 等. 水蒸汽蒸馏-分光光度法测定钆镁合金中氟量[J]. 稀土, 2014, 35(5): 80-84.

Liu C, Hao Q, Cui A D, et al. Determination of fluorine content in Gd-Mg alloy by water vapor distillation-spectrophotometry chemical analysis method[J]. Chinese Rare Earths, 2014, 35(5): 80-84.

[10]

袁从慧, 阮毅, 邹学权, 等. 氧瓶燃烧-离子色谱法测定铜精矿中氟[J]. 冶金分析, 2016, 36(8): 30-34.

Yuan C H, Ruan Y, Zou X Q, et al. Determination of fluorine in copper concentrate by oxygen flask combustion-ion chromatography[J]. Metallurgical Analysis, 2016, 36(8): 30-34.

[11]

阳兆鸿, 李华昌, 于力, 等. 水蒸气蒸馏-离子色谱法测定硫化矿中氟和硫[J]. 冶金分析, 2015, 35(4): 34-38.

Yang Z H, Li H C, Yu L, et al. Determination of fluoride and chloride in sulfide ores by steam distillation ion chromatography[J]. Metallurgical Analysis, 2015, 35(4): 34-38.

[12]

姜新华, 倪承珠, 朱彬和, 等. 离子色谱-柱切换法测定土壤浸出液中的氟离子[J]. 色谱, 2016, 34(4): 442-446.

Jiang X H, Ni C Z, Zhu B H, et al. Determination of fluoride in soil water extract by ion chromatography with column-switching technique[J]. Chinese Journal of Chromatography, 2016, 34(4): 442-446.

[13]

唐梦奇, 刘顺琼, 袁焕明, 等. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟[J]. 岩矿测试, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012

Tang M Q, Liu S Q, Yuan H M, et al. Determination of fluorine in import copper ores by wavelength dispersive X-ray fluorescence spectrometry with pressed powder preparation[J]. Rock and Mineral Analysis, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012

[14]

陆晓明, 吉昂, 陶光仪, 等. X射线荧光光谱法测定萤石中的氟、钙及二氧化硅[J]. 分析化学, 1997, 25(2): 178-180. doi: 10.3321/j.issn:0253-3820.1997.02.014

Lu X M, Ji A, Tao G Y, et al. Determination of fluorine, calcium and silicon dioxide in fluorite by X-ray fluorescence spectrometry[J].Chinese Journal of Analytical Chemistry, 1997, 25(2): 178-180. doi: 10.3321/j.issn:0253-3820.1997.02.014

[15]

吴超超, 马秀艳, 邢文青, 等. 熔融制样-X射线荧光光谱法测定萤石中主次成分[J]. 冶金分析, 2017, 37(4): 42-47.

Wu C C, Ma X Y, Xing W Q, et al. Determination of major and minor components in fluorite by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2017, 37(4): 42-47.

[16]

王毅民, 贺中央. 磷矿石中主要和次要组分的X射线荧光光谱分析[J]. 分析化学, 1989, 17(1): 87-90.

Wang Y M, He Z Y. Determination of multi-elements in phosphate ore by XRF[J]. Chinese Journal of Analytical Chemistry, 1989, 17(1): 87-90.

[17]

石友昌, 李国会, 李志雄, 等. 熔融制样-X射线荧光光谱法测定磷矿石中主次组分[J]. 冶金分析, 2017, 37(10): 53-58.

Shi Y C, Li G H, Li Z X, et al. Determination of major and minor components in phosphate ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2017, 37(10): 53-58.

[18]

张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11): 51-57. doi: 10.3969/j.issn.1000-0720.2008.11.014

Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major, minor and trace elements in soil and stream sediment samples[J].Chinese Journal of Analysis Laboratory, 2008, 27(11): 51-57. doi: 10.3969/j.issn.1000-0720.2008.11.014

[19]

Tarsoly G, Ívári M, Záray G, et al. Determination of fluorine by total reflection X-ray fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2010, 65(4): 287-290. doi: 10.1016/j.sab.2010.02.019

[20]

An J S, Lee J, Yoon H O, et al. Strategies for overcoming limitations associated with fluorine determination in solid materials by conventional wavelength dispersive X-ray fluorescence spectrometry[J].Microchemical Journal, 2015, 122: 76-81. doi: 10.1016/j.microc.2015.03.015

[21]

An J S, Kim K H, Yoon H O, et al. Application of the wavelength dispersive X-ray fluorescence technique to determine soil fluorine with consideration of iron content in the matrix[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 69: 38-43. doi: 10.1016/j.sab.2012.02.006

[22]

肖德明, 吴朝辉. 地质样品中砷、镓、钴、镍、溴、氯、硫和氟的X射线荧光光谱法测定[J]. 铀矿地质, 1990, (5): 312-317.

Xiao D M, Wu C H. Determination of As, Ga, Co, Ni, Br, Cl, S and F in geological samples by X-ray fluorescence spectrometry[J]. Uranium Geology, 1990, (5): 312-317.

[23]

李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843.

Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843.

[24]

李承元, 李勤, 朱景和, 等. 国内外锂资源概况及其选冶加工工艺综述[J]. 世界有色金属, 2001, (8): 4-8.

Li C Y, Li Q, Zhu J H, et al. A survey of lithium resources at home and abroad and summary of technological of ore dressing and metallurgy[J]. World Nonferrous Metals, 2001, (8): 4-8.

[25]

王祎亚, 许俊玉, 詹秀春, 等. 较低稀释比熔片制样X射线荧光光谱法测定磷矿石中12种主次痕量组分[J]. 岩矿测试, 2013, 32(1): 58-63. doi: 10.3969/j.issn.0254-5357.2013.01.011

Wang Y Y, Xu J Y, Zhan X C, et al. Determination of twelve major, minor and trace components in phosphate ores by X-ray fluorescence spectrometry with a lower-dilution ratio of fused bead sample preparation[J]. Rock and Mineral Analysis, 2013, 32(1): 58-63. doi: 10.3969/j.issn.0254-5357.2013.01.011

相似文献(共20条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[3]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[4]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[5]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[6]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[7]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[8]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[9]

唐梦奇, 刘顺琼, 袁焕明, 谢毓群, 刘国文, 罗明贵. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟. 岩矿测试, 2013, 32(2): 254-257.

[10]

修凤凤, 樊勇, 李俊雨, 朱义杰. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素. 岩矿测试, 2018, 37(5): 526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

[11]

王梅英, 李鹏程, 李艳华, 李莹, 王留芳, 陈静. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析. 岩矿测试, 2013, 32(6): 909-914.

[12]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

[13]

王龙山, 刘琦, 徐海. X射线荧光光谱法测定土壤样品中碳氮硫氯等31种组分. 岩矿测试, 2007, 26(6): 490-492.

[14]

王志刚, 李凤全, 潘虹梅. 灰尘中主次量元素的X射线荧光光谱分析. 岩矿测试, 2008, 27(5): 383-385.

[15]

梁汉文, 陈德勋. 离子色谱法同时测定地质样品中氟氯磷硫. 岩矿测试, 1991, (3): 189-192199.

[16]

熊文明, 张志军. 碱熔-离子色谱法同时测定玻璃中的氟和硫. 岩矿测试, 2011, 30(6): 768-771.

[17]

刘玉纯, 林庆文, 马玲, 梁述廷. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化. 岩矿测试, 2018, 37(6): 671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014

[18]

尹静, 黄睿涛. 粉末压片制样-X射线荧光光谱法测定铁矿石中锌砷锰. 岩矿测试, 2011, 30(4): 491-493.

[19]

宋江涛, 赵庆令. 粉末压片制样-波长色散X射线荧光光谱法测定卤水中的溴. 岩矿测试, 2011, 30(4): 494-496.

[20]

谌观秀, 袁欣艺. X射线荧光光谱法测定长石的化学成分. 岩矿测试, 1999, (3): 232-234.

计量
  • PDF下载量(40)
  • 文章访问量(164)
  • HTML全文浏览量(39)
  • 被引次数(0)
目录

Figures And Tables

粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟

曾江萍, 李小莉, 张楠, 王家松, 魏双, 王娜