【引用本文】 张聪, 夏响华, 杨玉茹, 等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试, 2019, 38(1): 26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025
ZHANG Cong, XIA Xiang-hua, YANG Yu-ru, et al. Raman Spectrum Characteristics of Organic Matter in Silurian Longmaxi Formation Shale of Well Anye-1 and Its Geological Significance[J]. Rock and Mineral Analysis, 2019, 38(1): 26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义

1. 

中国地质调查局油气资源调查中心, 北京 100083

2. 

中国地质调查局非常规油气地质重点实验室, 北京 100083

3. 

中国地质大学(北京), 北京 100083

收稿日期: 2018-03-22  修回日期: 2018-06-24  接受日期: 2018-08-10

基金项目: “十三五”国家科技重大专项项目(2016ZX05034003-006);中国地质调查局地质矿产调查评价专项(DD20160094-1)

作者简介: 张聪, 硕士, 高级工程师, 沉积学专业。E-mail:zh_cong520@qq.com

Raman Spectrum Characteristics of Organic Matter in Silurian Longmaxi Formation Shale of Well Anye-1 and Its Geological Significance

1. 

Oil & Gas Survey, China Geological Survey, Beijing 100083, China

2. 

The Key Laboratory of Unconventional Oil & Gas Geology, China Geological Survey, Beijing 100083, China

3. 

China University of Geosciences(Beijing), Beijing 100083, China

Received Date: 2018-03-22
Revised Date: 2018-06-24
Accepted Date: 2018-08-10

摘要:我国下古生界海相页岩有机质热演化程度普遍高、陆源植物镜质体缺乏,显微组分难以区分,现有镜质体反射率、岩石热解、Tm/Ts等生物标志化合物指标的测试方法难以有效评价泥页岩有机质成熟度。本文以贵州正安地区安页1井志留系龙马溪组页岩为研究对象,利用场发射扫描电镜观察和激光拉曼光谱检测相结合,不依赖于有机质显微组分类型,直接获取高演化页岩中不同赋存状态有机质的拉曼谱图,利用拉曼谱图衍生参数评价高演化页岩的有机质成熟度。结果表明:安页1井志留系龙马溪组页岩发育着生物结构型、脉状或团块状、自形边界填隙状、他形边界填隙状4种类型有机质,其中自形边界填隙状有机质孔径大于80nm,他形边界填隙状有机质孔径小于60nm,这两种填隙状占比在90%以上,是页岩储层的主体储集空间;4种形态的有机质热演化程度不一致。激光拉曼面扫描取谱方式获得大量数据计算的拉曼成熟度主体介于2.8%~3.0%,各类型有机质的拉曼成熟度数量占总数量的比例与场发射扫描电镜观测的半定量统计结果一致。该方法为刻画我国高-过成熟度页岩有机质成熟度提供了一种行之有效的手段。

关键词: 拉曼光谱, 有机质成熟度, 有机质赋存状态, 安页1井, 龙马溪组

要点

(1) 提出利用场发射扫描电镜和激光拉曼获取海相高演化泥页岩有机质成熟度的分析方法。

(2) 揭示了安页1井志留系龙马溪组页岩有机质的赋存状态及孔隙发育特征。

(3) 获取了安页1井志留系龙马溪组页岩不同赋存状态有机质的拉曼光谱特征。

Raman Spectrum Characteristics of Organic Matter in Silurian Longmaxi Formation Shale of Well Anye-1 and Its Geological Significance

ABSTRACT

BACKGROUND:

The higher thermal maturity of organic matter and the shortage of terrestrial plants are the main characteristics of Lower Paleozoic marine shale in China, which results in the difficulty of distinguishing macerals. Nowadays the existing methods of vitrinite reflectance, rock eval, Tm/Ts and other biomarker indices cannot be effectively used to evaluate the maturity of organic matter in shale.

OBJECTIVES:

To evaluate the maturity of organic matter in highly evolved shale.

METHODS:

The shale of the Silurian Longmaxi Formation of Well Anye-1 in Zheng'an area of Guizhou Province is used in the experiments. Field Emission Scanning Electron Microscopy and Laser Raman Spectroscopy are used to obtain the Raman Spectra of organic matter in different occurrences of highly evolved shale, independent of the type of organic macerals.

RESULTS:

It can be found that there are four types of organic matter in the Silurian Longmaxi Formation of Well Anye-1, i.e. bio-structural type, vein-like or clump-like type, euhedral and anhedral boundary filling gap shape. The euhdedral boundary filling gap shape has an organic aperture larger than 80nm, whereas the anhedral boundary filling gap shape has an organic aperture less than 60nm. These two types of organic matter are the main reservoir space of rock reservoirs, which account for more than 90%. Four types of organic matter have different thermal evolution degrees. Moreover, the Raman maturity ranges from 2.8% to 3.0%, which is calculated from the laser Raman surface scanning data. The proportion of Raman maturity of various organic matters to the total amount is consistent with the semi-quantitative statistical results observed by Field Emission Scanning Electron Microscopy.

CONCLUSIONS:

The methods used in the experiments are effective in measuring the maturity of organic matter in highly evolved marine shale in China.

KEY WORDS: Raman Spectroscopy, organic matter maturity, organic matter occurrence, Well Anye-1, Longmaxi Formation

HIGHLIGHTS

(1) An analysis method for calculating organic matter maturity of highly evolved marine shale by Field Emission Scanning Electron Microscopy and Laser Raman Spectroscopy was performed.

(2) The occurrence and pore characteristics of organic matters in Silurian Longmaxi Formation shale of Well Anye-1 were investigated.

(3) Raman spectra of organic matters in different occurrences was obtained.

本文参考文献

[1]

董大忠, 施振生, 管全中, 等. 四川盆地五峰组-龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67-77.

Dong D Z, Shi Z S, Guan Q Z, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-77.

[2]

邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 1-13.

Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China:Characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 1-13.

[3]

罗超, 刘树根, 孙玮, 等. 上扬子区下寒武统牛蹄塘组页岩气基本特征研究[J]. 天然气地球科学, 2014, 25(3): 453-469.

Luo C, Liu S G, Sun W, et al. Basic characteristics of shale gas in the Lower Cambrian Niutitang Formation in the Upper Yangtze region:Taking Nangao section in Danzhai as an example[J]. Natural Gas Geoscience, 2014, 25(3): 453-469.

[4]

王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718.

Wang M L, Xiao X M, Wei Q, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718.

[5]

陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574.

Chen S B, Zuo Z X, Zhu Y M, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574.

[6]

Kitty L M, Mark R, David N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048

[7]

赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.

Zhao W Z, Li J Z, Yang T, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.

[8]

Li X J, Hayashi J I, Li C Z, et al. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

[9]

Beyssac O, Goffé B, Chopin C, et al. Raman spectra of carbonaceous material in metasediments:A new geothermometer[J].Journal of Metamorphic Geology, 2002, 20(9): 859-871. doi: 10.1046/j.1525-1314.2002.00408.x

[10]

Kelemen S R, Fang H L. Maturity trends in Raman spectra from kerogen and coal[J].Energy Fuels, 2001, 15: 653-658. doi: 10.1021/ef0002039

[11]

刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.

Liu D H, Xiao X M, Tian H, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics:Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241.

[12]

Wilkins R W T, Boudou R, Sherwood N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy:The "RaMM" technique[J].International Journal of Coal Geology, 2014, 128-129: 143-152. doi: 10.1016/j.coal.2014.03.006

[13]

Wilkins R W T, Wang M, Gan H J, et al. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J].International Journal of Coal Geology, 2015, 150-151: 252-264. doi: 10.1016/j.coal.2015.09.007

[14]

王民, LiZhongsheng. 激光拉曼技术评价沉积有机质热成熟度[J]. 石油学报, 2016, 37(9): 1129-1136.

Wang M, Li Z S. Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy[J]. Acta Petrolei Sinica, 2016, 37(9): 1129-1136.

[15]

曾庆辉, 钱玲, 刘德汉, 等. 富有机质的黑色页岩和油页岩的有机岩石学特征与生、排烃意义[J]. 沉积学报, 2006, 24(1): 114-122.

Zeng Q H, Qian L, Liu D H, et al. Organic prteological study on hydrocarbon generation and expulsion from organic rich black shale and oil shale[J]. Acta Sedimentologica Sinica, 2006, 24(1): 114-122.

[16]

张慧, 焦淑静, 庞起发, 等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680.

Zhang H, Jiao S J, Pang Q F, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680.

[17]

张慧, 李贵红, 晋香兰, 等. 南方下古生界页岩中有机质赋存状态及其成因[J]. 煤田地质与勘探, 2018, 46(1): 51-55. doi: 10.3969/j.issn.1001-1986.2018.01.009

Zhang H, Li G H, Jin X L, et al. Organic matters and their occurrence state in Lower Paleozoic shale in South China[J].Coal Geology & Exploration, 2018, 46(1): 51-55. doi: 10.3969/j.issn.1001-1986.2018.01.009

[18]

蔡潇, 王亮, 靳雅夕, 等. 渝东南地区页岩有机孔隙类型及特征[J]. 天然气地球科学, 2016, 27(3): 513-519.

Cai X, Wang L, Jin Y X, et al. Types and characteristics of organic pore in shale gas reservoir of Southeastern Chongqing area[J]. Natural Gas Geoscience, 2016, 27(3): 513-519.

[19]

Zhang T W, Geoffrey S E, Stephen C R, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry, 2012, 47: 120-131. doi: 10.1016/j.orggeochem.2012.03.012

[20]

范文斐, 侯读杰, 底萌卿, 等. 渝东南地区下古生界富有机质页岩有机岩石学特征[J]. 地质与勘探, 2016, 52(2): 346-356.

Fan W F, Hou D J, Di M Q, et al. Organic petrology characteristics of organic rich shale of Lower Palaeozoic in Southeast Chongqing[J]. Geology and Exploration, 2016, 52(2): 346-356.

[21]

Christoph S T, David W H, Robert C J, et al. Kerogen matura-tion and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas:A combined petrographic and Raman spectrometric study[J].Organic Geochemistry, 1998, 28(9-10): 535-542. doi: 10.1016/S0146-6380(98)00021-7

[22]

左兆喜, 陈尚斌. 激光拉曼法在高-过成熟页岩及煤成熟度评价中的应用[J]. 岩矿测试, 2016, 35(2): 193-198.

Zuo Z X, Chen S B. Application of laser Raman spectroscopy to the evaluation of the high-and overhigh-maturity of shale and coal[J]. Rock and Mineral Analysis, 2016, 35(2): 193-198.

[23]

何谋春, 吕新彪, 刘艳荣, 等. 激光拉曼光谱在油气勘探中的应用研究初探[J]. 光谱学与光谱分析, 2004, 24(11): 1363-1366. doi: 10.3321/j.issn:1000-0593.2004.11.023

He M C, Lü X B, Liu Y R, et al. Elementary investigation on the application of laser Raman microprobe in petroleum exploration[J].Spectroscopy and Spectral Analysis, 2004, 24(11): 1363-1366. doi: 10.3321/j.issn:1000-0593.2004.11.023

[24]

李志明, 施伟军. 激光拉曼光谱法分析多种显微组分荧光变化及其应用[J]. 岩矿测试, 2008, 27(5): 341-345. doi: 10.3969/j.issn.0254-5357.2008.05.006

Li Z M, Shi W J. Laser Raman spectrometric analysis for fluorescence alteration of multiple macerals and its application[J]. Rock and Mineral Analysis, 2008, 27(5): 341-345. doi: 10.3969/j.issn.0254-5357.2008.05.006

相似文献(共18条)

[1]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[2]

张毅刚. 拉曼光谱在分析气液包裹体气体成分中的应用. 岩矿测试, 1992, (4): 350-353.

[3]

李淑玲. 二氧化碳—水体系的拉曼光谱研究. 岩矿测试, 1998, (3): 177-180.

[4]

赵俊哲, 吕新彪. 高压下白云石的原位拉曼光谱研究. 岩矿测试, 2008, 27(5): 337-340.

[5]

, 郑海飞, 陈晋阳. 高温下合成包裹体中流体水分子氢键的拉曼光谱分析. 岩矿测试, 2002, (3): 166-170.

[6]

刘亚非, 王立社, 魏小燕, 周宁超, 来志庆, 杨文强, 李智明, 赵慧博. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征. 岩矿测试, 2016, 35(1): 48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009

[7]

张水昌, 张蒂嘉, 张大江, 崔京钢, 张鼐. 氯盐溶液的拉曼光谱特征及测试探讨. 岩矿测试, 2005, (1): 40-42.

[8]

田隆. 五颜六色的黄龙玉及致色机理. 岩矿测试, 2012, 31(2): 306-311.

[9]

龙梅 裴世桥. 近红外反射光谱学在岩石矿物研究中的应用Ⅱ.快速测定地质样品中有机质. 岩矿测试, 2004, (1): 6-10.

[10]

杨常青, 张双双, 吴楠, 侯艳娜, 徐彩春, 徐志彬. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究. 岩矿测试, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

[11]

邱灵佳, 黄国林, 帅琴, 苏玉. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用. 岩矿测试, 2015, 34(2): 218-223. doi: 10.15898/j.cnki.11-2131/td.2015.02.011

[12]

熊艳, 钟夏阳, 陈金保. 消解炉消解-氧化还原滴定法测定土壤样品中有机质. 岩矿测试, 2006, 25(2): 191-192.

[13]

龚迎莉, 孙玮琳, 汪双清, 沈斌. 生油岩中有机质加速溶剂萃取和索氏萃取方法对比. 岩矿测试, 2009, 28(5): 416-422.

[14]

张兴超, 刘超, 黄艺, 黄方, 于慧敏. 干法灰化处理对含有机质土壤样品铜同位素测量的影响. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201803290033

[15]

何廷鹏, 栾进华, 胡科, 李甜, 杨柳, 张跃磊. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景. 岩矿测试, 2018, 37(1): 87-95. doi: 10.15898/j.cnki.11-2131/td.201703230037

[16]

江泓. 用稳健方差分析评估地球化学调查土壤中有机质的采样质量和分析质量. 岩矿测试, 2004, (1): 52-55.

[17]

李志雄, 韩奕彤, 徐永强, 杨洋, 陈家玮. 动态光散射技术原位表征天然有机质存在下纳米零价铁的团聚效应. 岩矿测试, 2016, 35(6): 634-641. doi: 10.15898/j.cnki.11-2131/td.2016.06.010

[18]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

计量
  • PDF下载量(16)
  • 文章访问量(83)
  • HTML全文浏览量(15)
  • 被引次数(0)
目录

Figures And Tables

安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义

张聪, 夏响华, 杨玉茹, 白名岗, 代峰, 熊杰