【引用本文】 王喆, 谭科艳, 梁明会, 等. 天然丝光沸石表面重构改性及其在水中去除重金属的应用[J]. 岩矿测试, 2018, 37(6): 678-686. doi: 10.15898/j.cnki.11-2131/td.201802110018
WANG Zhe, TAN Ke-yan, LIANG Ming-hui, et al. Surface Modification of Natural Mordenite and Its Application in Removal of Heavy Metals from Aqueous Solution[J]. Rock and Mineral Analysis, 2018, 37(6): 678-686. doi: 10.15898/j.cnki.11-2131/td.201802110018

天然丝光沸石表面重构改性及其在水中去除重金属的应用

1. 

同济大学土木工程学院, 上海 200092

2. 

自然资源部生态地球化学重点实验室, 国家地质实验测试中心, 北京 100037

3. 

国家纳米科学中心, 北京 100190

收稿日期: 2018-02-11  修回日期: 2018-04-10  接受日期: 2018-05-07

基金项目: 中国地质科学院基本科研业务费项目(YYWF201722;YYWF201617)

作者简介: 王喆, 硕士研究生, 从事地球化学和环境修复研究。E-mail:495953116@qq.com

通信作者: 谭科艳, 博士, 副研究员, 主要从事环境地球化学和环境污染修复研究。E-mail:tankeyan2017@163.com

Surface Modification of Natural Mordenite and Its Application in Removal of Heavy Metals from Aqueous Solution

1. 

College of Civil Engineering, Tongji University, Shanghai 200092, China

2. 

Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources; National Research Center for Geoanalysis, Beijing 100037, China

3. 

National Center for Nanoscience and Technology, Beijing 100190, China

Corresponding author: TAN Ke-yan, tankeyan2017@163.com

Received Date: 2018-02-11
Revised Date: 2018-04-10
Accepted Date: 2018-05-07

摘要:天然丝光沸石作为一种绿色廉价多孔材料广泛应用于环境治理中去除重金属,目前报道的天然沸石对重金属的去除率多在60%~90%,提升其去除效率已成为研究热点。本文采用正硅酸乙酯对天然丝光沸石进行表面重构改性,通过TEM、XRD、BET等手段表征其形貌和结构。结果表明:正硅酸乙酯水解生成的SiO2可与天然丝光沸石复合形成新颖的"SiO2/丝光沸石",原沸石表面包覆了新生纳米SiO2孔结构,同时没有损坏原始沸石的多孔结构,使改性沸石材料兼具了天然丝光沸石和纳米SiO2孔结构优点,增强了对重金属离子的吸附能力。该改性材料对水中Pb2+、Cd2+、Zn2+和Mn2+的最高吸附率为99.3%、97.1%、98.3%和97.0%,且极少解吸,性能稳定。考虑经济成本并保证合适吸附率的情况下选择吸附效率最佳的投加量,得到改性材料对初始浓度10 mg/L的Pb2+、Cd2+、Zn2+、Mn2+溶液的最佳投加量分别为0.5 g/L、2 g/L、2 g/L、5 g/L,可为中试和规模应用提供参考。较之焙烧、酸、碱、盐和有机改性,本改性方式对多种重金属均有高的吸附率,并显现出操作简便、成本低和环境友好等优势,具有较好应用前景。

关键词: 天然丝光沸石, 二氧化硅, 改性, 重金属, 吸附

要点

(1) 研究了一种新型表面改性天然丝光沸石的制备方法并对其进行表征。

(2) 改性丝光沸石在吸附去除重金属和时间效率方面显示出较大的优势。

(3) 研究了改性丝光沸石吸附去除水中重金属的最佳投加量。

(4) 为天然矿物材料通过简单改性应用于水中吸附去除重金属提供了新思路。

Surface Modification of Natural Mordenite and Its Application in Removal of Heavy Metals from Aqueous Solution

ABSTRACT

BACKGROUND:

Natural mordenite is widely used as a green and cheap porous material to remove heavy metals in environmental treatment. Currently, the removal rate of heavy metals by natural zeolites is from 60% to 90%, and improving its removal efficiency has been a hot topic.

OBJECTIVES:

To reconstruct and modify natural mordenite by tetraethyl orthosilicate, and determine its effect on the removal of heavy metals in water.

METHODS:

The morphology and structure of the modified mordenites were characterized by TEM, XRD and BET.

RESULTS:

The SiO2 hydrolyzed by tetraethyl orthosilicate can be combined with natural mordenite to form a new 'SiO2/mordenite'. The surface of the original mordenite is coated with the pore structure of the new nano-SiO2 without damaging the porous structure of the original mordenite. The modified mordenite combines the advantages of natural mordenite and nano-SiO2 pore structure, enhancing the adsorption of heavy metal ions. The highest adsorption rate of modified mordenite for Pb2+, Cd2+, Zn2+, and Mn2+ was 99.3%, 97.1%, 98.3%, and 97.0%, respectively. The modified mordenites were minimally desorbed during the entire process and have stable performance. Considering the cost and the appropriate adsorption rate, the best dosage of adsorption efficiency is selected. The optimal dosage of Pb2+, Cd2+, Zn2+ and Mn2+ solutions for the initial concentration of 10 mg/L is 0.5, 2, 2 and 5 g/L, respectively. It can provide a reference for a pilot experiment and scale applications.

CONCLUSIONS:

Compared with roasting, acid, alkali, salt and organic modification, this modification method has a high adsorption rate for a variety of heavy metals, and shows the advantages of simple operation, low cost and environmental friendliness, making it a good application prospect.

KEY WORDS: natural mordenites, silica, surface modification, heavy metals, adsorption

HIGHLIGHTS

(1) The preparation and characterization of a new type of surface modified natural mordenite were presented.

(2) The modified mordenite showed considerable advantages in removal of heavy metals and time efficiency.

(3) The optimum dosage of modified mordenite for removing heavy metals in water was studied.

(4) A new idea for the removal of heavy metals in water by simple modification of natural minerals was provided.

本文参考文献

[1]

Li Z Y, Ma Z W, van Der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853.

[2]

Li H X, Ji H B, Shi C J, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health[J].Chemosphere, 2017, 172: 505-515. doi: 10.1016/j.chemosphere.2017.01.021

[3]

Xu C, Zhou P J, Li H Y, et al. Contamination and spatial distribution of heavy metals in soil of Xiangxi River water-level-fluctuating zone of the Three Gorges Reservoir, China[J].Human and Ecological Risk Assessment, 2017, 23(4): 851-863. doi: 10.1080/10807039.2017.1288562

[4]

Jia Y Y, Wang L, Qu Z P, et al. Distribution, contamin-ation and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China[J].Environmental Science and Pollution Research, 2018, 25(7): 7012-7020. doi: 10.1007/s11356-017-1068-x

[5]

Momodu M A, Anyakora C A. Heavy metal contamination of ground water:The surulere case study[J]. Research Journal of Environmental & Earth Sciences, 2010, 2(1): 39-43.

[6]

Ferati F, Kerolli-Mustafa M, Kraja-Ylli A, et al. Assessment of heavy metal contamination in water and sediments of Trepca and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis[J]. Environmental Monitoring and Assessment, 2015, 187(6).

[7]

Kastyuchik A, Karam A, Aïder M, et al. Effectiveness of alkaline amendments in acid mine drainage remediation[J]. Environmental Technology & Innovation, 2016, 6: 49-59.

[8]

Zhao Y N. Review of the natural, modified, and synthetic zeolites for zeavy metals removal from wastewater[J].Environmental Engineering Science, 2016, 33(7): 443-454. doi: 10.1089/ees.2015.0166

[9]

Son E B, Poo K M, Chang J S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass[J].Science of the Total Environment, 2018, 615: 161-168. doi: 10.1016/j.scitotenv.2017.09.171

[10]

Rahman M M, Adil M, Yusof A M, et al. Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells[J].Materials (Basel), 2014, 7(5): 3634-3650. doi: 10.3390/ma7053634

[11]

Hizal J, Tutem E, Guclu K, et al. Heavy metal removal from water by red mud and coal fly ash:An integrated adsorption-solidification/stabilization process[J].Desalination and Water Treatment, 2013, 51(37-39): 7181-7193. doi: 10.1080/19443994.2013.771289

[12]

Cao J S, Wang C, Fang F, et al. Removal of heavy metal Cu(Ⅱ) in simulated aquaculture wastewater by modified palygorskite[J].Environmental Pollution, 2016, 219: 924-931. doi: 10.1016/j.envpol.2016.09.014

[13]

谭科艳, 王喆, 蔡敬怡, 等. 地球化学工程技术修复江西某Pb超标耕地的应用[J]. 地球学报, 2017, 38(6): 953-960.

Tan K Y, Wang Z, Cai J Y, et al. The application of geochemical engineering technology to the remediation of a Pb-polluted abandoned farmland in Jiangxi Province[J]. Acta Geoscientica Sinica, 2017, 38(6): 953-960.

[14]

Ciosek A L, Luk G K. Kinetic modelling of the removal of multiple heavy metallic ions from mine waste by natural zeolite sorption[J].Water, 2017, 9(7). doi: 10.3390/w9070482

[15]

Inglezakis V J, Fyrillas M M, Stylianou M A, et al. Two-phase homogeneous diffusion model for the fixed bed sorption of heavy metals on natural zeolites[J].Microporous and Mesoporous Materials, 2018, 266: 164-176. doi: 10.1016/j.micromeso.2018.02.045

[16]

Reeve P J, Fallowfield H J. Natural and surfactant modi-fied zeolites:A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms[J].Journal of Environmental Management, 2018, 205: 253-261.

[17]

Wen J, Yi Y J, Zeng G M, et al. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J].Journal of Environmental Management, 2016, 178: 63-69. doi: 10.1016/j.jenvman.2016.04.046

[18]

Mulyati S, Arahman N, Syawaliah, et al.Removal of Me-tal Iron from Groundwater Using Aceh Natural Zeolite and Membrane Filtration[C]//Proceedings of 1st Annual Applied Science and Engineering Conference (Aasec), 2017.

[19]

Tran H N, Viet P V, Chao H P, et al. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds[J].Ecotoxicology and Environmental Safety, 2018, 147: 55-63. doi: 10.1016/j.ecoenv.2017.08.027

[20]

Liu Y, Lou Z M, Sun Y, et al. Influence of complexing agent on the removal of Pb(Ⅱ) from aqueous solutions by modified mesoporous SiO2[J].Microporous and Mesoporous Materials, 2017, 246: 1-13. doi: 10.1016/j.micromeso.2017.03.005

[21]

Zendehdel M, Shoshtari-Yeganeh B, Cruciani G, et al. Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization[J].Journal of the Iranian Chemical Society, 2016, 13(10): 1915-1930. doi: 10.1007/s13738-016-0908-9

[22]

Kim S A, Kamala-Kannan S, Oh S G, et al. Simultaneous removal of chromium(Ⅵ) and Reactive Black 5 using zeolite supported nano-scale zero-valent iron composite[J].Environmental Earth Sciences, 2016, 75(5): 447. doi: 10.1007/s12665-015-4855-z

[23]

Lin J, Zhan Y. Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites[J].Chemical Engineering Journal, 2012, 200-202: 202-213. doi: 10.1016/j.cej.2012.06.039

[24]

吴昆明, 郭华明, 魏朝俊, 等. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632.

Wu K M, Guo H M, Wei C J, et al. Adsorption characteristics of arsenic in water by modified magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632.

[25]

石太宏, 吕灿, 左莉娜, 等. 硅烷化改性沸石对重金属离子的吸附性能[J]. 环境工程学报, 2013, 7(3): 1045-1052.

Shi T H, Lü C, Zuo L N, et al. Adsorption of heavy metal ions by silylation modified zeolite[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1045-1052.

[26]

易发成. 沸石的活化处理及其对铅、钴的吸附性研究[J]. 矿物岩石, 2005, 25(3): 118-121. doi: 10.3969/j.issn.1001-6872.2005.03.026

Yi F C. The activation treatment and Pb2+, Co2+ ions adsorption capability of zeolite[J].Journal of Mineralogy and Petrology, 2005, 25(3): 118-121. doi: 10.3969/j.issn.1001-6872.2005.03.026

[27]

郝鹏飞, 梁靖, 钟颖, 等. 改性沸石对含铅废水的处理研究[J]. 环境科学与管理, 2009, 34(6): 106-108. doi: 10.3969/j.issn.1673-1212.2009.06.031

Hao P F, Liang J, Zhong Y, et al. The research of modified zeolite to the disposal of leaded wastewater[J].Environmental Science and Management, 2009, 34(6): 106-108. doi: 10.3969/j.issn.1673-1212.2009.06.031

[28]

陈溪, 崔天顺, 邓晓军, 等. 改性沸石对镉(Ⅱ)的交换性能研究[J]. 工业安全与环保, 2015, 41(4): 55-57. doi: 10.3969/j.issn.1001-425X.2015.04.018

Chen X, Cui T S, Deng X J, et al. Research on the Cd2+ ion exchange by modified zeolite[J].Industrial Safety and Environmental Protection, 2015, 41(4): 55-57. doi: 10.3969/j.issn.1001-425X.2015.04.018

[29]

李蘅, 张静, 徐文炘, 等. 沸石处理选矿重金属废水初步研究[J]. 矿产与地质, 2015, 29(5): 682-687. doi: 10.3969/j.issn.1001-5663.2015.05.025

Li H, Zhang J, Xu W X, et al. A preliminary study on treatment of heavy metal beneficiation wastewater by zeolite[J].Mineral Resources and Geology, 2015, 29(5): 682-687. doi: 10.3969/j.issn.1001-5663.2015.05.025

[30]

Maretto M, Bianchi F, Vignola R, et al. Microporous and mesoporous materials for the treatment of wastewater produced by petrochemical activities[J].Journal of Cleaner Production, 2014, 77: 22-34. doi: 10.1016/j.jclepro.2013.12.070

[31]

文叶轩, 郝硕硕, 朱家亮, 等. 天然和改性沸石对铬吸附特征研究[J]. 中国陶瓷, 2015, 51(7): 16-20.

Wen Y X, Hao S S, Zhu J L, et al. Research on adsorption characteristics of chromium on natural and modified zeolite[J]. China Ceramics, 2015, 51(7): 16-20.

相似文献(共20条)

[1]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[2]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[3]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

[4]

陈梅兰, 李立. 改性有机膨润土对苯酚吸附性能的研究. 岩矿测试, 2005, (4): 259-261267.

[5]

范晓媛, 陈忠, 刘晓, 曾凡刚, 席英玉. 含石英二元矿物复配物对聚丙烯酰胺吸附的协同效应. 岩矿测试, 2003, (2): 134-136.

[6]

郭林中, 韦瑞杰, 王海潮, 魏建录. 改性活性炭的制备及其对金吸附性能的研究. 岩矿测试, 2014, 33(4): 528-534.

[7]

何金兰. 鱼腥藻对某些金属离子的吸附效应研究(Ⅰ). 岩矿测试, 1992, (3): 225-227.

[8]

白德奎, 朱霞萍, 王艳艳, 曾美兰. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究. 岩矿测试, 2010, 29(1): 55-60.

[9]

唐莉, 李家熙. 藻吸附金属离子的研究—斜生栅藻富集金. 岩矿测试, 1994, (3): 161-168.

[10]

王粤新, 刘建国. 重量法测定岩石矿物中二氧化硅的几种凝聚剂. 岩矿测试, 1994, (2): 134-136.

[11]

许又方, 蔡玉曼. 钛铁矿中二氧化硅的硅钼蓝分光光度法测定. 岩矿测试, 2007, 26(1): 75-77.

[12]

社恒清, 孙健, 纪雷, 刘心同, 林雨霏, 王岩. 自举法对我国进口铁矿二氧化硅含量的代表值估计. 岩矿测试, 2007, 26(1): 29-32.

[13]

谭科艳, 刘晓端, 黄园英, 陈燕芳. 固定配比的钠化膨润土与土壤在不同pH条件下对 重金属离子的吸附效果研究. 岩矿测试, 2010, 29(4): 411-413.

[14]

张宁, 刘海波, 方增坤. 电感耦合等离子体发射光谱法测定锌精矿中的二氧化硅. 岩矿测试, 2011, 30(3): 325-327.

[15]

王小强, 杨惠玲. 电感耦合等离子体发射光谱法测定铬矿石中的二氧化硅. 岩矿测试, 2012, 31(5): 820-823.

[16]

申书昌, 冷茉含, 彭程, 吕伟超. 二氧化钛表面键合配位体固相萃取填料的制备及其吸附性能研究. 岩矿测试, 2018, 37(1): 21-29. doi: 10.15898/j.cnki.11-2131/td.201706080096

[17]

宋来忠, 张娜, 汪立今. 新疆巴里坤膨润土改性提纯试验. 岩矿测试, 2007, 26(2): 150-152.

[18]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

[19]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[20]

翟磊, 詹秀春, 樊兴涛, 温宏利, 焦距, 刘雷雷. 应用S930树脂富集薄样-X射线荧光光谱现场分析环境水体中8种重金属的方法研究. 岩矿测试, 2015, 34(1): 118-128. doi: 10.15898/j.cnki.11-2131/td.2015.01.016

计量
  • PDF下载量(21)
  • 文章访问量(121)
  • HTML全文浏览量(28)
  • 被引次数(0)
目录

Figures And Tables

天然丝光沸石表面重构改性及其在水中去除重金属的应用

王喆, 谭科艳, 梁明会, 蔡敬怡, 侯士田, 王悦, 江鹏