【引用本文】 唐诗, 苏隽, 陆太进, 等. 化学气相沉积法再生钻石的实验室检测特征研究[J]. 岩矿测试, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017
TANG Shi, SU Jun, LU Tai-jin, et al. Research on Laboratory Testing Features of Chemical Vapor Deposition in Overgrowth Diamonds[J]. Rock and Mineral Analysis, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017

化学气相沉积法再生钻石的实验室检测特征研究

1. 

国家珠宝玉石质量监督检验中心, 北京 100013

2. 

自然资源部珠宝玉石首饰管理中心北京研究所, 北京 100013

3. 

国家珠宝玉石质量监督检验中心, 辽宁 沈阳 110013

4. 

国家珠宝玉石质量监督检验中心, 上海 200122

收稿日期: 2018-02-07  修回日期: 2018-04-25  接受日期: 2018-08-10

基金项目: 国家自然科学基金项目(41272086,41473030);国家珠宝玉石质量监督检验中心(NGTC)科研基金项目(NGTCBJ17007)

作者简介: 唐诗, 硕士, 工程师, 从事钻石鉴定研究工作。E-mail:tangs@ngtc.com.cn

通信作者: 苏隽, 高级工程师, 从事钻石与宝玉石鉴定研究工作。E-mail:suj@ngtc.com.cn

Research on Laboratory Testing Features of Chemical Vapor Deposition in Overgrowth Diamonds

1. 

National Gemstone Testing Center, Beijing 100013, China

2. 

Research Institute of Beijing, National Gems & Jewelry Technology Administrative Center, Ministry of Natural Resources, Beijing 100013, China

3. 

National Gemstone Testing Center, Shenyang 110013, China

4. 

National Gemstone Testing Center, Shanghai 200122, China

Corresponding author: SU Jun, suj@ngtc.com.cn

Received Date: 2018-02-07
Revised Date: 2018-04-25
Accepted Date: 2018-08-10

摘要:再生钻石是使用化学气相沉积法(CVD)以天然钻石为基底再生长合成钻石层,得到具有整体外观的钻石产品。由于再生钻石含有天然钻石的氮杂质信息,传统的合成钻石排查方法和检测流程已不再适用于再生钻石的检测。本文对实验室检出的一颗再生钻石进行了详尽的宝石学测试分析,以建立再生钻石的最佳检测方案。结果显示:常规的显微观察、钻石仪器排查以及红外光谱测试都不能将再生钻石检出。DiamondViewTM多方位发光图像观察该样品呈现清晰的发光分层现象,上层为红色荧光与蓝绿色磷光,下层为深蓝色荧光与惰性磷光;红外透射光谱分区域定点扫描样品上层为Ⅱa型钻石,下层为Ⅰa型钻石;紫外可见吸收光谱分析和光致发光光谱测试显示样品同时具有N3和高浓度[Si-V]-缺陷。综合判定该样品亭部的下半部分为天然钻石,亭部的上半部分和冠部为CVD合成钻石,CVD层厚度约740μm。作为我国首例报道的再生钻石,与国外已报道的同类型样品相比,该样品中分层界限不可见,且合成层厚度呈现明显增长。研究认为,应用多方位发光图像分析及光谱测试技术是再生钻石检测的关键。

关键词: 再生钻石, CVD合成钻石, 光谱检测, 发光图像

要点

(1) 实验室对国内首例报道的CVD再生钻石进行了全面的测试分析。

(2) 再生钻石层的厚度约为740μm,与天然钻石层之间无颜色差异和分层界限。

(3) 传统的钻石排查与检测方法不适用,多方位发光图像分析与光谱测试可有效区分。

Research on Laboratory Testing Features of Chemical Vapor Deposition in Overgrowth Diamonds

ABSTRACT

BACKGROUND:

Overgrowth diamond refers to the product of thick CVD synthetic diamond layer grown on a natural diamond with the whole appearance. Since overgrown diamonds contain information on the nitrogen impurities of natural diamonds, traditional synthetic diamond screening methods and testing procedures are no longer applicable to the detection of overgrown diamonds.

OBJECTIVE:

To gemologically test an overgrowth diamond sample in order to investigate the full identification features and to propose the optimum detection strategy.

METHODS:

Minspecting, screening instruments testing, UV-Vis/FTIR/PL spectra examinations, as well as fluorescence and phosphorescence observation under deep UV excitation are carried out.

RESULTS:

The sample cannot be identified by traditional microscopic observation, diamond instrument screening, and infrared spectra measurement. The sample has a distinct boundary that is separated by different luminescence under DiamondViewTM. The upper layer displays red fluorescence and greenish blue phosphorescence, while the lower layer shows deep blue fluorescence and no phosphorescence. Infrared spectroscopic analysis shows that the upper layer is type Ⅱa and the lower layer is type Ⅰa diamond. The UV-Vis absorption and photoluminescence spectra confirmed the coexistence of N3 centers and a high level of[Si-V]- defects in the diamond.

CONCLUSIONS:

It was confirmed that the lower part of the sample is natural and the upper part of the sample is CVD synthetic layer with a thickness around 740μm. The first overgrowth diamond reported domestically was compared to the same type of samples reported abroad. The existence of a boundary are missing and the thickness of the CVD layer increased significantly in this sample. The innovative application of the multidirectional luminescence imaging and spectroscopic analyses is the key to laboratory testing of overgrowth diamond.

KEY WORDS: overgrowth diamond, CVD synthetic diamond, spectroscopic testing, luminescence imaging

HIGHLIGHTS

(1) The first reported Chemical Vapor Deposition (CVD) overgrowth diamond in China was analyzed.

(2) The CVD synthetic diamond layer is approximately 740μm thick and shows no color difference or visible boundary from natural layer.

(3) Traditional screening and testing methods are not reliable, while multidirectional luminescence imaging and spectroscopic analyses are more effective.

本文参考文献

[1]

Fritsch E, Phelps A W. Type Ⅱb diamond thin films deposited on tonear-colorless naturalgem diamonds[J]. Diamond & Related Materials, 1993, 2(2-4): 70-74.

[2]

Yacobi B G, Lebens J, Vahala K J, et al. Preferential incorporation of defects in monocrystalline diamond films[J]. Diamond & Related Materials, 1993, 2(2-4): 92-99.

[3]

Eaton-Magana S. Long-term durability of CVD synthetic film on natural diamond[J]. Gems & Gemology, 2014, 50(2): 152.

[4]

Moe K J, Johnson P, D'Haenens-Johansson U, et al. A synthetic diamond overgrowth on a natural diamond[J]. Gems & Gemology, 2017, 53(2): 237-239.

[5]

Serov R, Shelementiev Y, Serova A.Hybrid Diamonds: Natural Diamonds Overgrown with CVD Synthetic[C]//The Proceedings of 35th International Geological Congress.2017: 51-53.

[6]

Christopher M, Breeding , Shigley J E, et al. The 'type' classi-fication system of diamonds and its importance in gemology[J]. Gems & Gemology, 2009, 45(2): 96-111.

[7]

宋中华, 陆太进, 苏隽, 等. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法[J]. 岩矿测试, 2016, 35(5): 496-504.

Song Z H, Lu T J, Su J, et al. The spectral characteristics and identification techniques forcolorless and nearcolorless HPHT synthetic diamonds[J]. Rock and Mineral Analysis, 2016, 35(5): 496-504.

[8]

Wang W, Johnson P, Moe K S, et al. CVD synthetic diamonds from gemesis corp[J]. Gems & Gemology, 2012, 48(2): 80-97.

[9]

Moses T M, Reinitz I M, Johnson M L, et al. A contri-bution to understanding the effect of blue fluorescence on the appearance of diamonds[J].Gems & Gemology, 1997, 33(4): 244-259.

[10]

Shigley J E, Breeding C M. Optical defects in diamond:A quick reference chart[J]. Gems & Gemology, 2013, 49(2): 107-111.

[11]

Tang S, Su J, Lu T J, et al. A melee-size CVD synthetic diamond in pearl and diamond jewelry[J]. Gems & Gemology, 2017, 53(3): 382.

[12]

Wang W, Moses T, Linares R, et al. Gem-quality synthe-tic diamonds grown by the chemical vapor deposition method[J]. Gems & Gemology, 2003, 39(4): 268-283.

[13]

Eaton-Magana S, Shigley J E. Observations on CVD-grown synthetic diamonds:A review[J]. Gems & Gemology, 2016, 52(3): 222.

[14]

宋中华, 兰延, 沈美冬, 等. NGTC实验室发现未揭示的CVD合成钻石鉴定特征研究[J]. 宝石和宝石学杂志, 2012, 14(4): 30-34. doi: 10.3969/j.issn.1008-214X.2012.04.005

Song Z H, Lan Y, Shen M D, et al. Identification characteristics of undisclosed CVD synthetic diamonds found recently by NGTC[J].Journal of Gems and Gemmology, 2012, 14(4): 30-34. doi: 10.3969/j.issn.1008-214X.2012.04.005

[15]

Collins A T. Colour centers in diamond[J]. Journal of Gemmology, 1982, 18: 35-75.

[16]

Collins A T. The colour of diamond and how it may be changed[J].Journal of Gemmology, 2001, 27: 341-359. doi: 10.15506/JoG.2001.27.6

[17]

Collins A T, Stanley M, Woods G S, et al. Nitrogen isotope effects in synthetic diamonds[J].Journal of Physics D:Applied Physics, 1987, 20(7): 969-974. doi: 10.1088/0022-3727/20/7/022

[18]

Collins A T. Intrinsic and extrinsic absorption and luminescence in diamond[J].Physica B:Condensed Matter, 1993, 185(1-4): 284-296. doi: 10.1016/0921-4526(93)90250-A

[19]

Collins A T, Kanda H, Burns R C, et al. The segregation of nickel-related optical centers in the octahedral growth sectors of synthetic diamond[J].Philosophical Magazine B, 1990, 61(5): 797-810. doi: 10.1080/13642819008207562

[20]

Tang S, Song Z H, Lu T J, et al. Two natural type Ⅱa diamonds with strong phosphorescence and Ni-related defects[J]. Gems & Gemology, 2017, 53(4): 476-478.

[21]

Song Z H, Lan Y, Shen M D, et al. Identification characteristics of undisclosed CVD synthetic diamonds found recently by NGTC[J]. Journal of Gems and Gemmology, 2012, 14(4): 30-34.

[22]

宋中华,魏华,田晶. 钻石辨假[M] . 北京: 文化出版社, 2017

Song Z H,Wei H,Tian J. Identification of Diamonds[M] . Beijing: Cultural Development Press, 2017
[23]

Fisher D, Spits R A. Spectroscopic evidence of GE POL HPHT-treated natural type Ⅱa diamonds[J].Gems & Gemology, 2000, 36(1): 42-49.

[24]

宋中华, 陆太进, 苏隽, 等. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征[J]. 岩矿测试, 2018, 37(1): 64-69.

Song Z H, Lu T J, Su J, et al. Identification of HPHT-treated hydrogen-rich diamonds by optical absorption and photo luminescence spectroscopy techniques[J]. Rock and Mineral Analysis, 2018, 37(1): 64-69.

相似文献(共17条)

[1]

兰延, 陆太进, 张丛森, 梁榕, 丁汀, 陈华, 柯捷, 毕立君. 新型GV5000宽频诱导发光测试仪的研制及其应用于筛分无色小颗粒合成钻石和天然钻石. 岩矿测试, 2016, 35(5): 505-512. doi: 10.15898/j.cnki.11-2131/td.2016.05.009

[2]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[3]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[4]

朱果逸, 周延秀. 痕量铁和锰的化学发光检测. 岩矿测试, 1997, (3): 221-228.

[5]

马德正. 无极放电灯的再生. 岩矿测试, 1987, (4): 321-322.

[6]

魏建山, 李可, 赵志华, 王莉坤, 黄跃. 应用于原子荧光光谱分析的空心阴极灯灯电流与激发光强度关系的实验. 岩矿测试, 2006, 25(4): 384-386.

[7]

涂彩, 袁心强, 周钊. 利用激光诱导离解光谱检测铍铝元素区分透闪石白玉产地. 岩矿测试, 2012, 31(2): 301-305.

[8]

杨英杰, 黄胜国, 蓝青叁. 显微图像分析系统及其在矿物粒度分析中的应用研究. 岩矿测试, 2003, (4): 269-272.

[9]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞. 基于SEM图像灰度水平的页岩孔隙分割方法研究. 岩矿测试, 2016, 35(6): 595-602. doi: 10.15898/j.cnki.11-2131/td.2016.06.005

[10]

辛仁轩, 王建晨. 电荷注入检测器—等离子体光谱仪光度精度与分析参数的关系. 岩矿测试, 2000, (3): 177-179.

[11]

汪雨. 高分辨连续光源原子吸收光谱仪检测饮用矿泉水中的金属离子. 岩矿测试, 2007, 26(6): 485-489.

[12]

武中臣, 熊智新, 张淑宁, 王海东, 张鹏彦, 贾滨, 贺守波, 高虎, 杨田林. 傅立叶变换中红外漫反射光谱法定量检测褐煤的六个关键指标. 岩矿测试, 2008, 27(5): 346-348.

[13]

钟坚海, 郑瑞娟, 陈金凤, 陈章捷, 张艳燕, 林亚妹, 刘明健. 连续自动再生化学抑制-离子色谱法测定石膏及其制品中的氟和氯. 岩矿测试, 2015, 34(3): 330-334. doi: 10.15898/j.cnki.11-2131/td.2015.03.012

[14]

李绍卿. 矿石中微量铬的化学发光测定. 岩矿测试, 1986, (1): 5-8.

[15]

张小燕, 李绍卿. 矿石中痕量铁的化学发光研究. 岩矿测试, 1987, (4): 267-270.

[16]

彭平, 李志良. 增效试剂在无机发光分析中的应用. 岩矿测试, 1990, (1): 57-65.

[17]

丁海芳, 金继红. 化学发光法测定岩矿中痕量铊. 岩矿测试, 1991, (1): 47-49.

计量
  • PDF下载量(15)
  • 文章访问量(63)
  • HTML全文浏览量(32)
  • 被引次数(0)
目录

Figures And Tables

化学气相沉积法再生钻石的实验室检测特征研究

唐诗, 苏隽, 陆太进, 马永旺, 柯捷, 宋中华, 张钧, 张晓玉, 代会茹, 李海波, 张健, 吴旭旭, 刘厚祥