【引用本文】 邓长生, 李盛富, 张建梅, 等. 常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽[J]. 岩矿测试, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016
DENG Chang-sheng, LI Sheng-fu, ZHANG Jian-mei, et al. Determination of Niobium and Tantalum in Geochemical Exploration Samples by ICP-MS with Acid Solution at Normal Pressure[J]. Rock and Mineral Analysis, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016

常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽

1. 

核工业二一六大队, 新疆 乌鲁木齐 830011

2. 

新疆维吾尔自治区计量测试研究院, 新疆 乌鲁木齐 830013

收稿日期: 2018-02-06  修回日期: 2018-03-18  接受日期: 2018-06-11

基金项目: 新疆军民结合产业发展专项资金项目“重点煤炭开发区放射性地质环境现状调查的关键技术研究”

作者简介: 邓长生, 硕士, 工程师, 从事岩石矿物分析检测工作。E-mail:184217851@qq.com

Determination of Niobium and Tantalum in Geochemical Exploration Samples by ICP-MS with Acid Solution at Normal Pressure

1. 

No. 216 Geology Party, China National Nuclear Corporation, Urumqi 830011, China

2. 

Xinjiang Institute of Measurement & Testing Technology, Urumqi 830013, China

Received Date: 2018-02-06
Revised Date: 2018-03-18
Accepted Date: 2018-06-11

摘要:常压酸溶法因溶矿效率高、成本低、检出限低,在地质实验室被广泛应用,但采用常用的氢氟酸-硝酸-盐酸-高氯酸四酸法处理样品,铌钽溶出率低,铌钽在容器壁发生水解和聚合反应导致其部分吸附或沉降,从而使测试结果偏低。因此,应用常压酸溶-电感耦合等离子体质谱(ICP-MS)分析地球化学勘查样品中的铌钽,需要解决的两个关键问题是铌钽的溶出率和试液中铌钽的水解。针对溶出率的不足,本方法在酸体系中引入硫酸,即氢氟酸-硝酸-盐酸-高氯酸-硫酸可以完全将铌钽溶出;针对水解,采用5%氢氟酸-5%硫酸-5%过氧化氢为提取剂,并采取与样品前处理相同分析流程的标准物质制作曲线,这两个方法相结合能有效抑制样品溶液中铌钽的水解,同时标准物质制作曲线法降低了ICP-MS分析中的样品溶液与标准溶液基体不一致引起的误差。本方法经国家标准物质验证,相对误差小于±7%,相对标准偏差在3.11%~6.27%之间(n=11),铌钽的检出限分别为0.04 μg/g和0.03 μg/g,相比于碱熔法检出限0.33 μg/g具有明显优势,可以准确测定地球化学勘查样品中的铌钽。

关键词: 地球化学勘查样品, , , 电感耦合等离子体质谱法, 常压酸溶, 标准曲线法

要点

(1) 准确测试地球化学样品中铌钽的关键问题是提高铌钽的溶出率和抑制水解。

(2) 酸溶体系中引入硫酸可以提高铌钽的溶出率。

(3) 采用5%氢氟酸-5%硫酸-5%过氧化氢的提取剂和标准物质曲线法能有效抑制铌钽的水解。

(4) 标准物质曲线法可以有效降低基体效应(非质谱干扰)。

Determination of Niobium and Tantalum in Geochemical Exploration Samples by ICP-MS with Acid Solution at Normal Pressure

ABSTRACT

BACKGROUND:

Due to its high digestion efficiency, low equipment cost and low detection limit, atmospheric acid dissolution is widely used in the geological laboratory. However, the commonly used four acid methods (hydrofluoric acid-nitric acid-hydrochloric acid-perchloric acid) is insufficient to dissolve niobium and tantalum. At the same time, niobium and tantalum would be partially adsorbed or would settle on the vessel caused by hydrolysis and polymerization reactions leading to the test results are lower than the real values.

OBJECTIVES:

To determine accurately the concentrations of Nb and Ta in geochemical samples, and to solve the two key problems of the dissolution rate and hydrolysis of Nb and Ta in the solution.

METHODS:

For the insufficiency of dissolution, sulphuric acid was introduced into the acid solution system. The acid solution system of hydrofluoric acid-nitric acid-hydrochloric acid-perchloric acid-sulphuric acid is used to completely dissolve niobium-tantalum in the sample. In view of the hydrolysis, extracting agent of 5% hydrofluoric acid-5% sulphuric acid-5% hydrogen peroxide was used. At the same time, the standard material curves were made using the same analytical process as the sample. The combination of these two methods effectively inhibited the hydrolysis of niobium-tantalum in sample solution. The method of standard material curves reduced the error caused by the matrix inconsistency between the sample solution and the standard solution in ICP-MS analysis.

RESULTS:

The relative deviation was less than ±7% and the relative standard deviation was 3.11%-6.27% (n=11). The detection limits of niobium and tantalum were 0.04 μg/g and 0.03 μg/g, respectively. Compared with the detection limit of 0.33 μg/g by alkali fusion method, it has obvious advantages.

CONCLUSIONS:

By changing the acid solution system, the extracting agent, and the method of standard material curves, the proposed method can be applied to measure niobium and tantalum in geochemical exploration samples.

KEY WORDS: geochemical exploration samples, niobium, tantalum, Inductively Coupled Plasma-Mass Spectrometry, acid solution at normal pressure, standard material curves

HIGHLIGHTS

(1) The key problems for accurate determination of niobium and tantalum in geochemical samples are to improve the dissolution rate and inhibit hydrolysis.

(2) The dissolution rate of niobium and tantalum can be improved by adding sulphuric acid into the acid solution system.

(3) The extracting agent of 5% hydrofluoric acid-5% sulphuric acid-5% hydrogen peroxide and the method of standard material curves can effectively inhibit the hydrolysis of niobium and tantalum.

(4) The method of standard material curves can effectively reduce the matrix effect (non-mass spectral interference).

本文参考文献

[1]

李冰,杨红霞. 电感耦合等离子体质谱原理和应用[M] . 北京: 地质出版社, 2005: 144-147.

Li B,Yang H X. Principle and Application of Inductively Coupled Plasma Mass Spectrometry[M] . Beijing: Geological Publishing House, 2005: 144-147.
[2]

李冰, 杨红霞. 电感耦合等离子体质谱(ICP-MS)技术在地学研究中的应用[J]. 地学前缘, 2003, 10(2): 367-377. doi: 10.3321/j.issn:1005-2321.2003.02.015

Li B, Yang H X. Applications of inductively coupled plasma mass spectrometry in earth science[J].Earth Science Frontiers, 2003, 10(2): 367-377. doi: 10.3321/j.issn:1005-2321.2003.02.015

[3]

岩石矿物分析编委会. 岩石矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011: 381-396.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M] . Beijing: Geological Publishing House, 2011: 381-396.
[4]

叶家瑜,江宝林. 区域地球化学勘查样品分析方法[M] . 北京: 地质出版社, 2004: 252

Ye J Y,Jiang B L. Analysis Methods of Regional Geochemical Exploration Samples[M] . Beijing: Geological Publishing House, 2004: 252
[5]

李刚, 姚玉玲, 李婧祎, 等. 铌钽元素分析技术新进展[J]. 岩矿测试, 2018, 37(1): 1-14.

Li G, Yao Y L, Li J Y, et al. Progress of niobium and tantalum analytical technology[J]. Rock and Mineral Analysis, 2018, 37(1): 1-14.

[6]

何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

[7]

时晓露, 刘洪青, 孙月婷, 等. 电感耦合等离子体质谱法测定岩石样品中的锆铌铪钽两种预处理方法的比较[J]. 岩矿测试, 2009, 28(5): 427-430. doi: 10.3969/j.issn.0254-5357.2009.05.006

Shi X L, Liu H Q, Sun Y T, et al. Comparison of two different sample pretreatment methods in determination of Zr, Nb, Hf, Ta in rocks by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 427-430. doi: 10.3969/j.issn.0254-5357.2009.05.006

[8]

戴雪峰, 董利明, 代小吕, 等. 电感耦合等离子体质谱法测定地质样品中锆、铪、铌、钽、锡[J]. 广州化工, 2016, 44(14): 117-120. doi: 10.3969/j.issn.1001-9677.2016.14.043

Dai X F, Dong L M, Dai X L, et al. Determination of Zr, Hf, Nb, Ta and Sn in geological samples by inductively coupled plasma-mass spectrometry[J].Guangzhou Chemical Industry, 2016, 44(14): 117-120. doi: 10.3969/j.issn.1001-9677.2016.14.043

[9]

马生凤, 温宏利, 巩爱华, 等. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J]. 岩矿测试, 2009, 28(6): 535-540. doi: 10.3969/j.issn.0254-5357.2009.06.007

Ma S F, Wen H L, Gong A H, et al. Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J]. Rock and Mineral Analysis, 2009, 28(6): 535-540. doi: 10.3969/j.issn.0254-5357.2009.06.007

[10]

童春临, 刘勇胜, 胡圣虹, 等. ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J]. 地球化学, 2009, 38(1): 43-52. doi: 10.3321/j.issn:0379-1726.2009.01.005

Tong C L, Liu Y S, Hu S H, et al. Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J].Geochimica, 2009, 38(1): 43-52. doi: 10.3321/j.issn:0379-1726.2009.01.005

[11]

闫红玲, 来新泽, 王琳, 等. 常压混合酸溶矿-电感耦合等离子体发射光谱法测定铌钽[J]. 世界地质, 2011, 30(3): 493-496. doi: 10.3969/j.issn.1004-5589.2011.03.027

Yan H L, Lai X Z, Wang L, et al. Dissolution with mixed acids under normal pressure-determination of niobium and tantalum by inductively coupled plasma atomic emission spectrometry[J].Global Geology, 2011, 30(3): 493-496. doi: 10.3969/j.issn.1004-5589.2011.03.027

[12]

王小如. 电感耦合等离子体质谱应用实例[M] . 北京: 化学工业出版社, 2005: 66-78.

Wang X R. Application Examples of Inductively Coupled Plasma Mass Spectrometry[M] . Beijing: Chemical Industry Press, 2005: 66-78.
[13]

马生凤, 温宏利, 李冰, 等. 微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J]. 岩矿测试, 2016, 35(3): 271-275.

Ma S F, Wen H L, Li B, et al. Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J]. Rock and Mineral Analysis, 2016, 35(3): 271-275.

[14]

Awaji S, Nakamura K, Nozaki T, et al. A simple method for precise determination of 23 trace elements in granitic rocks by ICP-MS after lithium tetraborate fusion[J]. Resource Geology, 2010, 56(4): 471-478.

[15]

Hall G E M, Pelchat J C. Analysis of standard reference materials for Zr, Nb, Hf and Ta by ICP-MS after lithium metaborate fusion and cupferron separation[J]. Geostandards & Geoanalytical Research, 1990, 14(1): 197-206.

[16]

Munker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand:Source constraints and application of refined ICP-MS techniques[J].Chemical Geology, 1998, 144(1-2): 23-45. doi: 10.1016/S0009-2541(97)00105-8

[17]

胡家祯, 于亚辉, 吴娣, 等. 电感耦合等离子体质谱法(ICP-MS)测定水系沉积物中的铌钽锆铪[J]. 矿产与地质, 2016, 30(4): 699-702. doi: 10.3969/j.issn.1001-5663.2016.04.030

Hu J Z, Yu Y H, Wu D, et al. Determination of Nb, Ta, Zr, and Hf in stream sediment by inductively coupled plasma mass spectrometry (ICP-MS)[J].Mineral Resources and Geology, 2016, 30(4): 699-702. doi: 10.3969/j.issn.1001-5663.2016.04.030

[18]

刘卫, 栾亚兰, 仵丽萍, 等. 电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J]. 理化检验(化学分册), 2006, 42(9): 715-716.

Liu W, Luan Y L, Wu L P, et al. ICP-AES determination of Nb and Ta in products of oredressing of spodumene[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2006, 42(9): 715-716.

[19]

姚玉玲, 吴丽琨, 刘卫, 等. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J]. 岩矿测试, 2015, 34(2): 224-248.

Yao Y L, Wu L K, Liu W, et al. Determination of Nb and Ta in ores and metallurgical samples by inductively coupled plasma-atomic emission spectrometry with ethanol as a sensitizer[J]. Rock and Mineral Analysis, 2015, 34(2): 224-248.

相似文献(共20条)

[1]

高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立. 岩矿测试, 2014, 33(3): 312-320.

[2]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

姚玉玲, 吴丽琨, 刘卫, 李刚. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽. 岩矿测试, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012

[5]

, 马玖彤, 李滦宁. 丹宁棉分离富集—发射光谱法同时测定地质样品中微量铌钽锆铪. 岩矿测试, 2001, (1): 27-30.

[6]

王建其, 林慈銮, 袁洪林, 柳小明, 第五春荣. 193 nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽. 岩矿测试, 2007, 26(1): 1-3.

[7]

孙海玲, 姜莹, 钱程. P204萃淋树脂对地质样品中痕量铌和钽的分离富集研究及其应用. 岩矿测试, 2003, (1): 33-36.

[8]

马生凤, 温宏利, 李冰, 王蕾, 朱云. 微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽. 岩矿测试, 2016, 35(3): 271-275. doi: 10.15898/j.cnki.11-2131/td.2016.03.009

[9]

陶慧林, 朱仕毅, 郑省政. K比例H点标准加入吸光光度法同时测定矿样中铌和钽. 岩矿测试, 2010, 29(6): 703-706.

[10]

朱玉伦, 李淑玲. 二阶导数荧光光度法同时测定岩矿中铌和钽. 岩矿测试, 1991, (3): 161-165.

[11]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[12]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[13]

李刚, 姚玉玲, 李婧祎, 赵朝辉, 罗涛, 李崇瑛. 铌钽元素分析技术新进展. 岩矿测试, 2018, 37(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223

[14]

胡斌, 江祖成. 难熔元素铌钽铀锆在电热蒸发—等离子体发射光谱中氟化蒸发行为研究. 岩矿测试, 1993, (3): 183-188.

[15]

刘江斌, 刘建军, 赵继宏, 马旻, 冯春红, 黄兴华. 电感耦合等离子体原子发射全谱直读光谱仪测定地质样品中的钽. 岩矿测试, 2005, (2): 151-153.

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445.

[18]

钟立峰, 涂相林, 崔学军, 梁细荣, 李杰, 许继峰. Carius管溶样-标准加入电感耦合等离子体质谱法测定土壤中碘. 岩矿测试, 2006, 25(1): 19-21.

[19]

王岚, 杨丽芳, 谭西早, 武朝辉. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉. 岩矿测试, 2017, 36(6): 574-580. doi: 10.15898/j.cnki.11-2131/td.201703130032

[20]

王加林, 李祖碧. 钽钼杂多酸—碱性染料多元缔合物体系的研究. 岩矿测试, 1993, (1): 38-42.

计量
  • PDF下载量(45)
  • 文章访问量(307)
  • HTML全文浏览量(77)
  • 被引次数(0)
目录

Figures And Tables

常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽

邓长生, 李盛富, 张建梅, 王明力, 勒孚河, 牛芳红