【引用本文】 马怡飞, 汪广恒, 张尼, 等. 乙醇介质制备载炭泡塑及其在地质样品金测定中的应用[J]. 岩矿测试, 2018, 37(5): 533-540. doi: 10.15898/j.cnki.11-2131/td.201801150005
MA Yi-fei, WANG Guang-heng, ZHANG Ni, et al. Application of Carbon-loaded Polyurethane Foam Produced by Ethanol Media in Determination of Gold in Geological Samples[J]. Rock and Mineral Analysis, 2018, 37(5): 533-540. doi: 10.15898/j.cnki.11-2131/td.201801150005

乙醇介质制备载炭泡塑及其在地质样品金测定中的应用

1. 

西安科技大学化学与化工学院, 陕西 西安 710054

2. 

西安西北有色地质研究院有限公司, 陕西 西安 710054

收稿日期: 2018-01-15  修回日期: 2018-03-05  接受日期: 2018-05-07

基金项目: 陕西省自然科学基础研究计划项目(2012JQ2009)

作者简介: 马怡飞, 工程师, 分析化学专业。E-mail:307725993@qq.com

通讯作者: 汪广恒, 副教授, 硕士生导师, 研究方向为聚氨酯泡沫塑料、化工过程模拟与优化。E-mail:wghysl@qq.com

Application of Carbon-loaded Polyurethane Foam Produced by Ethanol Media in Determination of Gold in Geological Samples

1. 

College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China

2. 

Xi'an Northwest Geological Institute for Nonferrous Metals Co., LTD., Xi'an 710054, China

Corresponding author: WANG Guang-heng, wghysl@qq.com

Received Date: 2018-01-15
Revised Date: 2018-03-05
Accepted Date: 2018-05-07

摘要:载炭泡塑相较于无负载泡塑,可有效提高泡塑对金的吸附能力,但现有制备载炭泡塑的方法制备效率不高。为了缩短制备载炭泡塑的时间,提高制备效率,本文采用活性炭-乙醇溶液制备载炭泡塑,通过优化制备条件,包括负载介质的种类、试剂浓度、浸泡时间,使得制备100个载炭泡塑的时间可以控制在30 min之内,并结合ICP-OES建立了测定地质样品中金的方法。实验结果表明:该方法的振荡时间可以缩短至20 min。金的质量浓度在0~100.00 μg/mL范围内与光谱强度呈良好的线性关系,相关系数为0.9997,方法检出限(3σ)为0.0066 μg/g,测定结果相对标准偏差为0.81%~2.11%(n=10)。该方法经4个国家标准物质验证,准确度与精密度良好,能够满足地质样品中金的分析测试要求。

关键词: 地质样品, , 载炭泡塑, 制备效率, 电感耦合等离子体发射光谱法

要点

(1) 采用活性炭-乙醇溶液制备载炭泡塑,制备时间大幅缩短,制备效率明显提高。

(2) 采取不同的方式制备载炭泡塑,泡塑对活性炭的稳定吸附容量为定值。

(3) 采用载炭泡塑吸附金,振荡时间可以缩短至20 min,测定方法的线性范围明显增加。

Application of Carbon-loaded Polyurethane Foam Produced by Ethanol Media in Determination of Gold in Geological Samples

ABSTRACT

BACKGROUND:

Compared with unloaded polyurethane foam, carbon-loaded polyurethane foam can effectively increase the adsorption capacity of gold, but the existing preparation method of carbon-loaded polyurethane foam is not efficient.

OBJECTIVES:

To shorten the preparation time of carbon-loaded polyurethane foam, improve the preparation efficiency, and optimize experimental conditions.

METHODS:

Activated carbon-ethanol solution was used to prepare carbon-loaded polyurethane foam. By optimizing conditions such as the load medium type, reagent concentration, and soaking time, the time for preparing 100 carbon-loaded polyurethane foams can be reduced to under 30 min. A method for the determination of gold in geological samples by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) combined with carbon-loaded polyurethane foam is described.

RESULTS:

The experimental results show that the oscillation time can be shortened to 20 min. The mass concentration of gold has a good linear relationship with the spectral intensity in the range of 0-100 μg/mL with the correlation coefficient of 0.9997. The detection limit (3σ) is 0.0066 μg/g, and the relative standard deviations of the results are 0.81%-2.11% (n=10).

CONCLUSIONS:

Four certified reference materials of gold ore are used to evaluate the method. The results show good accuracy and precision, and the method meets the requirements of geological sample analysis.

KEY WORDS: geochemical samples, gold, carbon-loaded polyurethane foam, the preparation efficiency, Inductively Coupled Plasma-Optical Emission Spectrometry

HIGHLIGHTS

(1) Activated carbon-ethanol solution was used to prepare carbon-loaded polyurethane foam. The preparation time was greatly shortened, and the preparation efficiency was significantly improved.

(2) The stable adsorption capacity of activated carbon was constant for different preparation methods.

(3) By using carbon-loaded polyurethane foam to adsorb gold, the time of oscillation can be reduced to 20 min, and the linear range significantly increased.

本文参考文献

[1]

陈永红, 孟宪伟, 苏广东, 等. 2013-2014年中国金分析测定的进展[J]. 黄金, 2016, 37(1): 79-85.

Chen Y H, Meng X W, Su G D, et al. Progress of gold determination and analysis technology in China, 2013 and 2014[J].Gold, 2016, 37(1): 79-85.

[2]

何一芳, 张学彬. 共沉淀分离富集-ICP-AES法测定铜灰渣中金、铂、钯[J]. 贵金属, 2014, 35(2): 59-63. doi: 10.3969/j.issn.1004-0676.2014.02.012

He Y F, Zhang X B. Determination of gold, platinum and palladium in copper slag by ICP-AES with coprecipitation separation and enrichment[J].Precious Metals, 2014, 35(2): 59-63. doi: 10.3969/j.issn.1004-0676.2014.02.012

[3]

Hassan M A, Hadi M M. Chemically modified activated carbon with tris(hydroxymethyl)aminomethane for selective adsorption and determination of gold in water samples[J].Arabian Journal of Chemistry, 2016, 9: 252-258. doi: 10.1016/j.arabjc.2011.03.017

[4]

赵延庆. 聚氨酯泡沫塑料吸附-电感耦合等离子体质谱法测定地质化探样品中金[J]. 冶金分析, 2016, 36(7): 34-38.

Zhao Y Q. Determination of gold in geochemical samples by inductively coupled plasma mass spectrometry with polyurethane foam plastic absorption[J]. Metallurgical Analysis, 2016, 36(7): 34-38.

[5]

马怡飞, 汪广恒, 高文旭, 等. 聚氨酯泡沫塑料富集-电感耦合等离子体发射光谱法测定地质样品中的金[J]. 化学分析计量, 2018, 27(1): 59-63. doi: 10.3969/j.issn.1008–6145.2018.01.015

Ma Y F, Wang G H, Gao W X, et al. Determination of gold in geological sample by ICP-OES with polyurethane foaming plastic[J].Chemical Analysis and Meterage, 2018, 27(1): 59-63. doi: 10.3969/j.issn.1008–6145.2018.01.015

[6]

付文慧, 艾兆春, 葛艳梅, 等. 火焰原子吸收光谱法测定高品位金矿石中的金[J]. 岩矿测试, 2013, 32(3): 427-430. doi: 10.3969/j.issn.0254-5357.2013.03.012

Fu W H, Ai Z C, Ge Y M, et al. Determination of au in high grade gold deposits by flame atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 427-430. doi: 10.3969/j.issn.0254-5357.2013.03.012

[7]

Pereira C O S, Mantovano T L, Turci C C, et al. Determination of gold in ore samples by energy dispersive X-ray fluorescence after separation and preconcentration on polyurethane foam[J].Microchemical Journal, 2014, 115(3): 121-125.

[8]

朱珠, 张鑫. 提高泡塑吸附金能力方法探讨[J]. 世界核地质科学, 2014, 31(4): 614-617. doi: 10.3969/j.issn.1672-0636.2014.04.009

Zhu Z, Zhang X. Discussion on the method to improve adsorption ability of Au by the foam plastic[J].World Nuclear Geoscience, 2014, 31(4): 614-617. doi: 10.3969/j.issn.1672-0636.2014.04.009

[9]

Moawed E A, El-shahat M F. Synthesis, characterization of low density polyhydroxy polyurethane foam and its application for separation and determination of gold in water and ores sample[J].Analytica Chimica Acta, 2013, 788: 200-207. doi: 10.1016/j.aca.2013.05.064

[10]

Xue D S, Wang H Y, Liu Y H, et al. Cytosine-functionalized polyurethane foam and its use as a sorbent for the determination of gold in geological samples[J].Analytical Methods, 2015, 8(1): 29-39.

[11]

王红月, 刘艳红, 薛丁帅, 等. 氨基泡塑的合成及其应用于富集地质样品中痕量金[J]. 岩矿测试, 2016, 35(4): 409-414.

Wang H Y, Liu Y H, Xue D S, et al. Synthesis of amino polyurethane foam and its application in trace gold enrichment in geological samples[J]. Rock and Mineral Analysis, 2016, 35(4): 409-414.

[12]

杨仲平, 靳晓珠, 黄华鸾, 等. TNA负载聚氨酯泡塑富集ICP-MS测定地球化学样品中痕量金、铂、钯[J]. 分析试验室, 2006, 25(9): 99-102. doi: 10.3969/j.issn.1000-0720.2006.09.027

Yang Z P, Jin X Z, Huang H Y, et al. ICP-MS determination of traces of Au, Pt, Pd in geological samples after preconcentration on polyurethane foam plastic loaded trioctylamine[J].Chinese Journal of Analysis Laboratory, 2006, 25(9): 99-102. doi: 10.3969/j.issn.1000-0720.2006.09.027

[13]

陈佩锋, 徐文胜, 魏连喜, 等. 甲基异丁基酮负载泡塑富集-原子吸收法测定金[J]. 矿产与地质, 2004, 18(3): 291-293. doi: 10.3969/j.issn.1001-5663.2004.03.022

Chen P F, Xu W S, Wei L X, et al. Flame AAS determination of gold after concentration by polyurethane foam loaded with methyl isobutyl ketone[J].Mineral Resources and Geology, 2004, 18(3): 291-293. doi: 10.3969/j.issn.1001-5663.2004.03.022

[14]

刘向磊, 孙文军, 文田耀, 等. 负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学, 2015, 43(9): 1371-1376.

Liu X L, Sun W J, Wen T Y, et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1371-1376.

[15]

陈景伟, 李玉明, 宋双喜, 等. 载炭泡塑吸附-电感耦合等离子体发射光谱法测定金矿石的金量[J]. 岩矿测试, 2015, 34(3): 314-318.

Chen J W, Li Y M, Song S X, et al. Determination of gold in gold ores by inductively coupled plasma-optical emission spectrometry with carbon-loaded foam plastic adsorption[J]. Rock and Mineral Analysis, 2015, 34(3): 314-318.

[16]

周红, 宋艳合, 李红霞, 等. 用载炭泡塑吸附原子吸收法测定地质样品中金[J]. 黄金地质, 2001, 7(2): 64-66.

Zhou H, Song Y H, Li H X, et al. Gold determination in geological samples by AAS after their enrichment on carbon-loaded foam plastic[J]. Gold Geology, 2001, 7(2): 64-66.

[17]

彭明军, 郅文青, 朱恩文, 等. 载炭泡塑分离富集-火焰原子吸收法测定金[J]. 岩矿测试, 1991, 13(1): 59-61.

Peng M J, Zhi W Q, Zhu E W, et al. Flame AAS determination of gold after concentration and separation by polyurethane foam loaded with active carbon[J]. Rock and Mineral Analysis, 1991, 13(1): 59-61.

[18]

谈建安, 黑文龙, 黄兴华, 等. 泡塑吸附-电感耦合等离子体发射光谱法测定矿石中的金[J]. 岩矿测试, 2009, 28(2): 147-150. doi: 10.3969/j.issn.0254-5357.2009.02.012

Tan J A, Hei W L, Huang X H, et al. Determination of gold in ores by inductively coupled plasma-atomic emission spectrometry with plastic foam absorption[J]. Rock and Mineral Analysis, 2009, 28(2): 147-150. doi: 10.3969/j.issn.0254-5357.2009.02.012

相似文献(共19条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

王红月, 刘艳红, 薛丁帅. 氨基泡塑的合成及其应用于富集地质样品中的痕量金. 岩矿测试, 2016, 35(4): 409-414. doi: 10.15898/j.cnki.11-2131/td.2016.04.012

[4]

彭振英, 熊昭春. 痕量价态金的载炭泡塑吸附分离研究. 岩矿测试, 1993, (4): 255-258.

[5]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[6]

刘向磊, 文田耀, 孙文军, 姚维利, 王腾飞, 吴俊文. 聚氨酯泡塑富集硫脲解脱-石墨炉原子吸收光谱法测定地质样品中金铂. 岩矿测试, 2013, 32(4): 576-580.

[7]

陈景伟, 李玉明, 宋双喜, 宋江涛, 初琳. 载炭泡塑吸附-电感耦合等离子体发射光谱法测定金矿石的金量. 岩矿测试, 2015, 34(3): 314-318. doi: 10.15898/j.cnki.11-2131/td.2015.03.009

[8]

何小辉, 白金峰, 陈卫明, 张勤. 流动注射-火焰原子吸收光谱法测定地质样品中的常量金. 岩矿测试, 2011, 30(1): 79-82.

[9]

王琳, 唐志中, 来新泽, 连文莉, 胡家祯, 周岚. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金. 岩矿测试, 2013, 32(3): 420-426.

[10]

李锡坤, 李展强, 张学华, 张汉萍, 李其英. 阴离子树脂-活性炭分离富集等离子体发射光谱法测定富钴锰结壳中的痕量金银铂钯. 岩矿测试, 2005, (2): 141-144.

[11]

夏珍珠. 电感耦合等离子体发射光谱法测定载金炭中铜铁钙镁. 岩矿测试, 2012, 31(2): 263-267.

[12]

盛献臻, 张汉萍, 李展强, 李海萍, 何光涛. 电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼. 岩矿测试, 2010, 29(4): 383-386.

[13]

漆亮, 胡静. 等离子体质谱法快速测定地质样品中的痕量铂族元素和金. 岩矿测试, 1999, (4): 267-270.

[14]

王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217.

[15]

李志强, 沈慧君. NK8310螯合树脂分离富集地质样品中痕量金银铂钯及其测定. 岩矿测试, 2001, (2): 91-.

[16]

邓玉强, 雷丽莉. 罗丹宁纤维富集分离—示波极谱法测定地质样品中的金. 岩矿测试, 1995, (4): 281-284.

[17]

郭小伟, 苏致兴. 流动注射在线罗丹宁纤维预浓集快速测定地质样品中痕量金. 岩矿测试, 1993, (4): 241-245.

[18]

邓宇, 班俊生. 磷酸三丁酯醋酸纤维富集—火焰原子吸收法测定地质样品中痕量金. 岩矿测试, 1996, (2): 141-142159.

[19]

戚文玲, 盛绍基. 野外现场多元素快速分析方法的研究和应用I.分析技术及金的测定. 岩矿测试, 2002, (2): 81-92.

计量
  • PDF下载量(7)
  • 文章访问量(106)
  • HTML全文浏览量(33)
  • 被引次数(0)
目录

Figures And Tables

乙醇介质制备载炭泡塑及其在地质样品金测定中的应用

马怡飞, 汪广恒, 张尼, 高文旭, 权斌