【引用本文】 马怡飞, 张尼, 魏增, 等. 振荡交换-抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量[J]. 岩矿测试, 2019, 38(1): 129-135. doi: 10.15898/j.cnki.11-2131/td.201712110191
MA Yi-fei, ZHANG Ni, WEI Zeng, et al. Rapid Determination of Soil Cation Exchange Capacity by Automatic Kjeldahl Analyzer after Oscillating Exchange and Suction Filtration[J]. Rock and Mineral Analysis, 2019, 38(1): 129-135. doi: 10.15898/j.cnki.11-2131/td.201712110191

振荡交换-抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量

1. 

西安西北有色地质研究院有限公司, 陕西 西安 710054

2. 

西北大学分析科学研究所, 陕西省电分析化学重点实验室, 陕西 西安 710069

收稿日期: 2017-12-12  修回日期: 2018-04-26  接受日期: 2018-07-06

基金项目: 陕西省工业科技攻关项目(2015GY54)

作者简介: 马怡飞, 工程师, 分析化学专业。E-mail:307725993@qq.com

Rapid Determination of Soil Cation Exchange Capacity by Automatic Kjeldahl Analyzer after Oscillating Exchange and Suction Filtration

1. 

Xi'an Northwest Geological Institute for Nonferrous Metals Co., LTD., Xi'an 710054, China

2. 

Institute of Analytical Science, Northwest University; Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Xi'an 710069, China

Received Date: 2017-12-12
Revised Date: 2018-04-26
Accepted Date: 2018-07-06

摘要:测定土壤阳离子交换量(CEC)的行业标准方法(LY/T1243-1999)是采取离心分离结合手工蒸馏进行滴定,耗时长、操作繁琐。为了缩短反应时间,提高检测效率,本文利用乙酸铵对酸性和中性土壤进行处理,用氯化铵-乙酸铵对石灰性土壤进行处理,应用振荡和抽滤装置快速交换和清洗阳离子,通过全自动凯氏定氮仪对吸附的铵根离子进行测定,由此计算CEC值。结果表明:在最佳的振荡和蒸馏时间、滴定酸浓度、指示剂配比等实验条件下,一个批次样品(100件)的分析流程仅需要12h,比传统方法检测时间缩短近80%。经国家标准物质验证,测定结果与推荐值相符,5次测定的相对标准偏差均小于1.5%。本方法免去了多次离心分离操作,解决了待测成分损失、CEC测定值偏低的问题,提高了检测效率和准确度,较林业标准方法的成本低,可操作性强,适用于土壤环境质量评价、地区土壤抽样调查等大批量土壤样品分析。

关键词: 振荡, 淋洗, 全自动凯氏定氮仪, 乙酸铵, 氯化铵-乙酸铵, 土壤, 阳离子交换量

要点

(1) 25min的振荡时间可以使样品和乙酸铵溶液完成充分的阳离子交换。

(2) 采用抽滤的方式可以快速淋洗除去多余的铵根离子。

(3) 使用本文方法,一个批次样品(100件)的分析流程仅需要12h。

Rapid Determination of Soil Cation Exchange Capacity by Automatic Kjeldahl Analyzer after Oscillating Exchange and Suction Filtration

ABSTRACT

BACKGROUND:

The industry criteria of determination of soil cation exchange capacity (CEC) (LY/T1243-1999)uses centrifugal separation combined with manual distillation and titration, which is complex and time consuming.

OBJECTIVES:

Determination of soil cation exchange capacity by automatic Kjeldahl analyzer after oscillating exchange and vacuum filtration.

METHODS:

The acidic and neutral soils were treated with ammonium acetate, the calcareous soil was treated with ammonium chloride-ammonium acetate, and the cations were quickly exchanged and cleaned by shaking and by using suction filtration equipment, and adsorbed by a fully automatic Kjeldahl analyzer. The ammonium ion was measured to calculate the CEC value.

RESULTS:

The experimental results show that, under the optimized oscillation and distillation, concentration of titration acid and ratio of indicator conditions, the analysis of one batch sample (100 pieces) only takes 12 hours. Compared with traditional methods, the detection time is shortened by nearly 80%. The results of national standard materials determined by the proposed method are in accordance with the certified values, the relative standard deviation is less than 1.5% (n=5).

CONCLUSIONS:

The method eliminates multiple centrifugation operations, solves the problem of low component loss and CEC measurement value deviations, and improves detection efficiency and accuracy. This method has a lower cost than the forestry standard method, and has high operability and is suitable for analysis of large-scale soil samples such as environmental quality assessment and regional soil sampling surveys.

KEY WORDS: oscillation, leaching, fully automatic Kjeldahl analyzer, ammonium acetate, ammonium chloride-ammonium acetate, soil, cation exchange capacity

HIGHLIGHTS

(1) Sufficient cation exchange between the sample and ammonium acetate solution can be completed by oscillating for 25min.

(2) Extra ammonium ions can be removed quickly by vacuum filtration.

(3) The analysis of one batch sample (100 pieces) takes only 12 hours.

本文参考文献

[1]

黄尚书, 叶川, 钟义军, 等. 不同土地利用方式对红壤坡地土壤阳离子交换量及交换性盐基离子的影响[J]. 土壤与作物, 2016, 5(2): 72-77.

Huang S S, Ye C, Zhong Y J, et al. Soil cation exchange capacity and exchangeable base cations as affected by land use pattern in sloping farmland of red soil[J]. Soils and Crops, 2016, 5(2): 72-77.

[2]

胡清菁, 张超兰, 靳振江, 等. 铅锌矿尾砂重金属污染物对不同土地利用类型土壤性质影响的典范对应分析[J]. 岩矿测试, 2014, 33(5): 714-722. doi: 10.3969/j.issn.0254-5357.2014.05.016

Hu Q J, Zhang C L, Jin Z J, et al. Canonical correspondence analysis for soil properties and heavy metal pollution from Pb-Zn mine tailings in different land use types[J]. Rock and Mineral Analysis, 2014, 33(5): 714-722. doi: 10.3969/j.issn.0254-5357.2014.05.016

[3]

Fang K, Kou D, Wang G Q, et al. Decreased soil cation exchange capacity across northern China's grasslands over the last three decade[J].Journal of Geophysical Research-Biogeosciences, 2017, 122(11): 3088-3097. doi: 10.1002/jgrg.v122.11

[4]

Aranda V, Oyonarte C. Characteristics of organic matter in soil surface horizons derived from calcareous and metamorphic rocks and different vegetation types from the mediterranean high-mountains in SE Spain[J]. Soil Biology, 2006, (42): 247-258.

[5]

Dawid J, Dorota K. A comparison of methods for the de-termination of cation exchange capacity of soils[J].Ecological Chemistry & Engineering S, 2014, 21(3): 487-498.

[6]

王文艳, 张丽萍, 刘俏, 等. 黄土高原小流域土壤阳离子交换量分布特征及影响因子[J]. 水土保持学报, 2012, 26(5): 123-127.

Wang W Y, Zhang L P, Liu Q, et al. Distribution and affecting factors of soil cation exchange capacity in watershed of the loess plateau[J]. Journal of Soil and Water Conservation, 2012, 26(5): 123-127.

[7]

沈纯怡, 邢伟银. 快速检测土壤阳离子交换量的研究[J]. 中国土壤与肥料, 2016, (5): 144-147.

Shen C Y, Xing W Y. Research on the rapid determination of cation exchange capacity in soil[J]. Soil and Fertilizer Sciences in China, 2016, (5): 144-147.

[8]

周圆, 卞世闻, 张宇, 等. 凯氏定氮仪测定土壤阳离子交换量的方法改进[J]. 环境科学导刊, 2015, 34(6): 106-109. doi: 10.3969/j.issn.1673-9655.2015.06.027

Zhou Y, Bian S W, Zhang Y, et al. Method improvement of detecting soil CEC by Kieldahl's azotometer[J].Environmental Science Survey, 2015, 34(6): 106-109. doi: 10.3969/j.issn.1673-9655.2015.06.027

[9]

拉毛吉, 王玉功, 张榕, 等. 乙酸铵离心交换法和乙酸钙离心交换法测定土壤阳离子交换量[J]. 中国无机分析化学, 2017, 7(3): 38-41. doi: 10.3969/j.issn.2095-1035.2017.03.010

La M J, Wang Y G, Zhang R, et al. Determination of cation exchange capacity of soil by centrifugal exchange of ammonium and calcium acetates[J].Chinese Journal of Inorganic Analytical Chenistry, 2017, 7(3): 38-41. doi: 10.3969/j.issn.2095-1035.2017.03.010

[10]

葛艳梅, 李亚. 膨润土测定阳离子交换量缩合滴定和凯式蒸馏滴定方法的比对[J]. 当代化工, 2016, 45(7): 1558-1559. doi: 10.3969/j.issn.1671-0460.2016.07.071

Ge Y M, Li Y. Delemination of cation exchange capacity of bentonite condensation titration and Kjeldahl distillation titration method comparison[J].Contemporary Chemical Industry, 2016, 45(7): 1558-1559. doi: 10.3969/j.issn.1671-0460.2016.07.071

[11]

窦蓓蕾, 张沛, 田渭花, 等. 陕西地区土壤阳离子交换量(CEC)测定方法研究[J]. 安徽农学通报, 2015, 21(22): 65-66. doi: 10.3969/j.issn.1007-7731.2015.22.029

Dou B L, Zhang P, Tian W H, et al. The determination method of soil cationic exchange capacity in Shaanxi area[J].Anhui Agricultural Science Bulletin, 2015, 21(22): 65-66. doi: 10.3969/j.issn.1007-7731.2015.22.029

[12]

张彦雄, 李丹, 张佐玉, 等. 两种土壤阳离子交换量测定方法的比较[J]. 贵州林业科技, 2010, 38(2): 45-49.

Zhang Y X, Li D, Zhang Z Y, et al. A comparison study of two methods for measurement of soil cation exchange capacity[J]. Guizhou Forestry Science and Technology, 2010, 38(2): 45-49.

[13]

Khorshidi M, Lu N. Determination of cation exchange capacity from soil water retention curve[J].Journal of Engineering Mechanics, 2017, 143(6): 04017023. doi: 10.1061/(ASCE)EM.1943-7889.0001220

[14]

魏昌龙, 赵玉国, 李德成, 等. 基于相似光谱匹配预测土壤有机质和阳离子交换量[J]. 农业工程学报, 2014, 30(1): 81-88. doi: 10.3969/j.issn.1002-6819.2014.01.011

Wei C L, Zhao Y G, Li D C, et al. Prediction of soil organic matter and cation exchange capacity based on spectral similarity measuring[J].Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 81-88. doi: 10.3969/j.issn.1002-6819.2014.01.011

[15]

方利民, 冯爱明, 林敏, 等. 可见/近红外光谱快速测定土壤中的有机碳含量和阳离子交换量[J]. 光谱学与光谱分析, 2010, 30(2): 327-330. doi: 10.3964/j.issn.1000-0593(2010)02-0327-04

Fang L M, Feng A M, Lin M, et al. Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 2010, 30(2): 327-330. doi: 10.3964/j.issn.1000-0593(2010)02-0327-04

[16]

杨乐苏. ICP-AES直接测定土壤中多种交换性阳离子组成[J]. 广东林业科技, 2008, 24(6): 20-23. doi: 10.3969/j.issn.1006-4427.2008.06.004

Yang L S. Directly determining the exchangeable cations in soil by ICP-AES[J].Guangdong Forestry Science and Technology, 2008, 24(6): 20-23. doi: 10.3969/j.issn.1006-4427.2008.06.004

[17]

张玉革, 肖敏, 董怡华, 等. 乙酸铵浸提原子吸收光谱法同时测定土壤交换性盐基离子组成[J]. 光谱学与光谱分析, 2012, 32(8): 2242-2245. doi: 10.3964/j.issn.1000-0593(2012)08-2242-04

Zhang Y G, Xiao M, Dong Y H, et al. Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate[J].Spectroscopy and Spectral Analysis, 2012, 32(8): 2242-2245. doi: 10.3964/j.issn.1000-0593(2012)08-2242-04

[18]

褚龙, 贺斌. 土壤阳离子交换量的测定方法[J]. 黑龙江环境通报, 2009, 33(1): 81-83.

Chu L, He B. Determining method of soil cation exchange capacity[J]. Heilongjiang Environmental Journal, 2009, 33(1): 81-83.

[19]

李荃. K9840自动凯氏定氮仪测定阳离子交换量[J]. 世界有色金属, 2017, (17): 284-285.

Li Q. K9840 automatic Kjeldahl apparatus used to determine the cation exchange capacity[J]. World Nonferrous Metals, 2017, (17): 284-285.

相似文献(共20条)

[1]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[4]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[7]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[8]

龚关, 陈济美. 膨胀土阳子交换量的测定. 岩矿测试, 2000, (2): 152-154.

[9]

胡外英, 张勤, 周建辉, 白金峰. 半微量凯氏法测定土壤全氮量的不确定度评定. 岩矿测试, 2007, 26(1): 40-44.

[10]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[11]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[12]

查立新, 马玲, 刘文长, 刘洪青, 陈波, 冯玲玲. 振荡提取和超声提取用于土壤样品中元素形态分析. 岩矿测试, 2011, 30(4): 393-399.

[13]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[14]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[15]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[16]

王春燕, 李瑞, 谷勤, 李雪梅, 廖立兵. 氯化铵-乙醇法测定蛭石的阳离子交换容量. 岩矿测试, 2008, 27(3): 204-206.

[17]

黄近丹. X射线能地测定土壤中7种主次量元素. 岩矿测试, 1999, (4): 308-310.

[18]

史亚利, 刘肖, Archava, Kinderman, Siriraks, Mike. 利用AutoPrep技术抑制型电导离子色谱法检测土壤中碘. 岩矿测试, 2007, 26(6): 446-450.

[19]

林琳, 劳月娥, 许健, 倪晓芳, 杨国祥. 在线渗析-离子色谱法测定土壤中有效氟. 岩矿测试, 2011, 30(4): 497-500.

[20]

姚朝英, 任兰. 氯化钯作基体改进剂石墨炉原子吸收光谱法测定土壤中的铍. 岩矿测试, 2012, 31(6): 975-979.

计量
  • PDF下载量(23)
  • 文章访问量(79)
  • HTML全文浏览量(15)
  • 被引次数(0)
目录

Figures And Tables

振荡交换-抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量

马怡飞, 张尼, 魏增, 高文旭, 王奎